首页> 外文OA文献 >An inconditionnally stable discontinuous Galerkin method for solving the 2D time-domain Maxwell equations on unstructured triangular meshes
【2h】

An inconditionnally stable discontinuous Galerkin method for solving the 2D time-domain Maxwell equations on unstructured triangular meshes

机译:用于求解非结构化三角形网格上的二维时域麦克斯韦方程的无条件稳定间断Galerkin方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Numerical methods for solving the time-domain Maxwell equations often rely on cartesian meshes and are variants of the finite difference time-domain (FDTD) method due to Yee. In the recent years, there has been an increasing interest in discontinuous Galerkin time-domain (DGTD) methods dealing with unstructured meshes since the latter are particularly well adapted to the discretization of geometrical details that characterize applications of practical relevance. However, similarly to Yee's finite difference time-domain method, existing DGTD methods generally rely on explicit time integration schemes and are therefore constrained by a stability condition that can be very restrictive on locally refined unstructured meshes. An implicit time integration scheme is a possible strategy to overcome this limitation. The present study aims at investigating such an implicit DGTD method for solving the 2D time-domain Maxwell equations on non-uniform triangular meshes.
机译:求解时域Maxwell方程的数值方法通常依赖于笛卡尔网格,并且由于Yee而成为有限差分时域(FDTD)方法的变体。近年来,人们对处理非结构化网格的不连续Galerkin时域(DGTD)方法越来越感兴趣,因为非结构化网格特别适合于表征实际实用性的几何细节的离散化。但是,类似于Yee的时域有限差分时域方法,现有的DGTD方法通常依赖于显式的时间积分方案,因此受到稳定性条件的限制,该稳定性条件可能非常局限于局部精炼的非结构化网格。隐式时间积分方案是克服此限制的一种可能策略。本研究旨在研究这种隐式DGTD方法,用于求解非均匀三角形网格上的二维时域Maxwell方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号