首页> 外文OA文献 >SAR Image Filtering Based on the Heavy-Tailed Rayleigh Model
【2h】

SAR Image Filtering Based on the Heavy-Tailed Rayleigh Model

机译:基于重尾瑞利模型的SAR图像滤波

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Synthetic aperture radar (SAR) images are inherently affected by a signal dependent noise known as speckle, which is due to the radar wave coherence. In this report, we propose a novel adaptive despeckling filter and derive a maximum a posteriori (MAP) estimator for the radar cross section (RCS). We first employ a logarithmic transformation to change the multiplicative speckle into additive noise. We model the RCS using the recently introduced heavy-tailed Rayleigh density function, which was derived based on the assumption that the real and imaginary parts of the received complex signal are best described using the alpha-stable family of distribution. We estimate model parameters from noisy observations by means of second-kind statistics theory, which relies on the Mellin transform. Finally, we compare our proposed algorithm with several classical speckle filters applied on actual SAR images. Experimental results show that the homomorphic MAP filter based on the heavy-tailed Rayleigh prior for the RCS is among the best for speckle removal.
机译:合成孔径雷达(SAR)图像固有地受到称为斑点的信号相关噪声的影响,这是由于雷达波的相干性造成的。在这份报告中,我们提出了一种新颖的自适应去斑点滤波器,并得出了雷达横截面(RCS)的最大后验(MAP)估计量。我们首先采用对数变换将乘法斑点转换为加性噪声。我们使用最近引入的重尾瑞利密度函数对RCS进行建模,该函数是基于以下假设得出的:使用α稳定分布族可以最好地描述接收到的复信号的实部和虚部。我们通过依赖于梅林变换的第二类统计理论,根据嘈杂的观测值估计模型参数。最后,我们将我们提出的算法与应用于实际SAR图像的几种经典散斑滤波器进行比较。实验结果表明,基于RCS先验的重尾瑞利的同态MAP滤波器是去除斑点最佳的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号