首页> 外文OA文献 >Hydrographic Network Extraction from Radar Satellite Images using a Hierarchical Model within a Stochastic Geometry Framework
【2h】

Hydrographic Network Extraction from Radar Satellite Images using a Hierarchical Model within a Stochastic Geometry Framework

机译:在随机几何框架内使用分层模型从雷达卫星图像中提取水文网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This report presents a two-step algorithm for unsupervised extraction of hydrographic networks from satellite images, that exploits the tree structures of such networks. First, the thick branches of the network are detected by an efficient algorithm based on a Markov random field. Second, the line branches are extracted using a recursive algorithm based on a hierarchical model of the hydrographic network, in which the tributaries of a given river are modeled by an object process (or a marked point process) defined within the neighborhood of this river. Optimization of each point process is done via simulated annealing using a reversible jump Markov chain Monte Carlo algorithm. We obtain encouraging results in terms of omissions and overdetections on a radar satellite image.
机译:本报告提出了一种从卫星图像中无监督地提取水文网络的两步算法,该算法利用了此类网络的树状结构。首先,通过基于马尔可夫随机场的高效算法检测网络的粗支路。其次,基于水文网络的分层模型,使用递归算法提取支线,其中给定河流的支流通过在该河流附近定义的对象过程(或标记点过程)进行建模。使用可逆跳跃马尔可夫链蒙特卡洛算法通过模拟退火来完成每个点过程的优化。我们在雷达卫星图像的遗漏和过度检测方面获得了令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号