首页> 外文OA文献 >An Efficient Network Log Anomaly Detection System using Random Projection Dimensionality Reduction
【2h】

An Efficient Network Log Anomaly Detection System using Random Projection Dimensionality Reduction

机译:利用随机投影降维的高效网络日志异常检测系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Network traffic is increasing all the time andnetwork services are becoming more complex and vulnerable.To protect these networks, intrusion detection systems are used.Signature-based intrusion detection cannot find previously unknownattacks, which is why anomaly detection is needed.However, many new systems are slow and complicated. Wepropose a log anomaly detection framework which aims tofacilitate quick anomaly detection and also provide visualizationsof the network traffic structure. The system preprocesses networklogs into a numerical data matrix, reduces the dimensionalityof this matrix using random projection and uses Mahalanobisdistance to find outliers and calculate an anomaly score foreach data point. Log lines that are too different are flagged asanomalies. The system is tested with real-world network data, andactual intrusion attempts are found. In addition, visualizations arecreated to represent the structure of the network data. We alsoperform computational time evaluation to ensure the performanceis feasible. The system is fast, finds real intrusion attempts anddoes not need clean training data.
机译:网络流量一直在增加,网络服务变得越来越复杂和脆弱,为了保护这些网络,使用了入侵检测系统。基于签名的入侵检测无法找到以前未知的攻击,这就是为什么需要异常检测的原因,但是许多新系统既缓慢又复杂。我们提出了一个日志异常检测框架,旨在促进快速异常检测,并提供网络流量结构的可视化。该系统将网络日志预处理为数值数据矩阵,使用随机投影降低该矩阵的维数,并使用马氏距离来查找离群值并计算每个数据点的异常得分。太不同的日志行被标记为异常。该系统已通过实际网络数据进行了测试,并且发现了实际的入侵尝试。另外,创建可视化以表示网络数据的结构。我们还执行计算时间评估以确保性能可行。该系统速度快,可以发现真正的入侵尝试,并且不需要干净的训练数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号