首页> 外文OA文献 >Mapping Fractional Cropland Distribution in Mato Grosso, Brazil Using Time Series MODIS Enhanced Vegetation Index and Landsat Thematic Mapper Data.
【2h】

Mapping Fractional Cropland Distribution in Mato Grosso, Brazil Using Time Series MODIS Enhanced Vegetation Index and Landsat Thematic Mapper Data.

机译:使用时间序列MODIS增强的植被指数和Landsat专题制图仪数据绘制巴西马托格罗索州的小片农田分布图。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mapping cropland distribution over large areas has attracted great attention in recent years, however, traditional pixel-based classification approaches produce high uncertainty in cropland area statistics. This study proposes a new approach to map fractional cropland distribution in Mato Grosso, Brazil using time series MODIS enhanced vegetation index (EVI) and Landsat Thematic Mapper (TM) data. The major steps include: (1) remove noise and clouds/shadows contamination using the Savizky?Gloay filter and temporal resampling algorithm based on the time series MODIS EVI data; (2) identify the best periods to extract croplands through crop phenology analysis; (3) develop a seasonal dynamic index (SDI) from the time series MODIS EVI data based on three key stages: sowing, growing, and harvest; and (4) develop a regression model to estimate cropland fraction based on the relationship between SDI and Landsat-derived fractional cropland data. The root mean squared error of 0.14 was obtained based on the analysis of randomly selected 500 sample plots. This research shows that the proposed approach is promising for rapidly mapping fractional cropland distribution in Mato Grosso, Brazil.
机译:近年来,绘制大面积农田分布图备受关注,但是,传统的基于像素的分类方法在农田面积统计中产生很大的不确定性。这项研究提出了一种使用时间序列MODIS增强植被指数(EVI)和Landsat Thematic Mapper(TM)数据绘制巴西马托格罗索州部分农田分布图的新方法。主要步骤包括:(1)使用Savizky?Gloay滤波器和基于时间序列MODIS EVI数据的时间重采样算法消除噪声和云/阴影污染; (2)通过作物物候分析确定提取农田的最佳时期; (3)根据三个关键阶段,从MODIS EVI时间序列数据中得出季节动态指数(SDI):播种,生长和收获; (4)根据SDI与Landsat衍生的分数耕地数据之间的关系,开发估算农地分数的回归模型。根据随机选择的500个样地的分析得出均方根误差为0.14。这项研究表明,所提出的方法有望用于快速绘制巴西马托格罗索州的部分农田分布图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号