首页> 外文OA文献 >Determining regional actual evapotranspiration ofirrigated crops and natural vegetation in the São Francisco river basin (Brazil) using remote sensing and Penman-Monteith equation.
【2h】

Determining regional actual evapotranspiration ofirrigated crops and natural vegetation in the São Francisco river basin (Brazil) using remote sensing and Penman-Monteith equation.

机译:利用遥感和Penman-Monteith方程确定圣弗朗西斯科河盆地(巴西)灌溉作物和自然植被的区域实际蒸散量。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To achieve sustainable development a nd to ensure water availability in hydrological basins, water managers need tools to determine the actual evapotranspiration (ET) on a large scale. Field energy balances fr om irrigated and natura l ecosystems together with a net of agro-meteorological stations were used to develop two models for ET quantification at basin scale, based on the Penman-Monteith equation. The first model (PM1) uses the resistances to the latent heat fluxes estimated from satellite measurements, while the second one (PM2) is based on the ratio of ET to the refere nce evapotranspiration (ET0) and its relation to remote sensing parame ters. The models were applied in the Low-Middle São Francisco river basin in Brazil and, after comparison against field results, showed good agreements with PM1 and PM2 explaining, respectively, 79% and 89% of the variances and mean square errors (RMSE) of 0.44 and 0.34 mm d?1. Even though the PM1 model was not chosen for ET calculatio ns, the equation for surface resistance (rs) was applied to infer the soil moisture conditions in a simplified vegetation classification. The maximum values of rs were for natural vegetation?c aatinga (average of 1,937 s m?1). Wine grape and mango orchard presented similar values around 130 s m?1, while table grape presented the lowest ones, averaging 74 s m?1. Petrolina and Juazeiro, in Pernambuco (PE) and Bahia (BA) states, respectively, were highlighted with the biggest irrigated areas. The highest increments are for vineyards and mango orchards. For the first crop the maximum increment was verified between 2003 and 2004 in Petrolina-PE, when the cultivated area increased 151%. In the case of mango orchards the most significant period was from 2005 to 2006 in Juazeiro-BA (129%). As the best performance was for PM2, it was selected and used to analyse the regional ET at daily and annual scales, making use of Landsat images and a geograp hic information system for different soil moisture conditions. Considering the daily rates of the regional ET, pixels with values lower than 1.0 mm d?1 occurred outside the rainy season, representing the caatinga species. Values from 1.0 to 5.0 mm d-during the driest conditions of the year coincided with irrigated crops, being the highest values for table grapes. The highest accumulated ET values during 2006 were for mango orchards, being around 500?1,300 mm yr?1. Vineyards presented lower values, ranging from 450?800 mm yr?1, while in caatinga they were between 200 and 400 mm yr ?1. It could be concluded that irrigated mango orchards and vineyards in that year consumed more water than caatinga by factors of 3 and 2, respectively. The mango orchards and vineya rd areas, representing 19.4 and 8.2% of the total irrigated area, respec tively, resulting in a total evaporative depletion of 0.22 km 3 yr?1in the growing regions comprised of the agro-meteorological stations.
机译:为了实现可持续发展并确保水文盆地的水供应,水管理者需要使用工具来大规模确定实际的蒸散量(ET)。利用Penman-Monteith方程,利用灌溉和自然生态系统的田间能量平衡以及农业气象站网,开发了两个盆地规模ET量化模型。第一个模型(PM1)使用通过卫星测量估计的对潜热通量的阻力,而第二个模型(PM2)基于ET与参考蒸散量(ET0)的比率及其与遥感参数的关系。该模型在巴西中低端的圣弗朗西斯科河流域中应用,与现场结果进行比较后,显示出与PM1和PM2的良好一致性,分别解释了79%和89%的方差和均方误差(RMSE)。 0.44和0.34毫米d?1。即使未选择PM1模型进行ET计算,也可以使用表面电阻方程(rs)来简化植被分类中的土壤湿度条件。 rs的最大值是天然植被-aatinga(平均1,937 s m?1)。在130 s m?1左右,酿酒葡萄和芒果园表现出相似的值,而鲜食葡萄则最低,平均为74 s m?1。伯南布哥州(PE)和巴伊亚州(BA)的Petrolina和Juazeiro的灌溉面积最大。增量最大的是葡萄园和芒果园。对于第一批作物,Petrolina-PE在2003年至2004年间确认了最大增产,当时耕种面积增加了151%。就芒果园而言,最重要的时期是2005年至2006年在华塞罗-BA(129%)。由于PM2的最佳性能,因此选择它并将其用于分析每日和年度尺度的区域ET,并利用Landsat图像和geograp hic信息系统针对不同的土壤湿度条件进行分析。考虑到区域ET的日速率,值低于1.0 mm d?1的像素出现在雨季之外,代表了caatinga物种。在一年中最干旱的季节中d的值从1.0到5.0 mm与灌溉的农作物重合,是鲜食葡萄的最高价值。在2006年期间,最高的累积ET值是芒果园,大约为500?1,300 mm yr?1。葡萄园呈现出较低的价值,范围从450到800 mm yr -1,而在caatinga中,它们的价值在200到400 mm yr -1之间。可以得出的结论是,那年灌溉的芒果园和葡萄园的用水量比caatinga分别高3倍和2倍。芒果园和葡萄藤面积分别占总灌溉面积的19.4%和8.2%,导致由农业气象台站组成的生长地区的蒸发总量为0.22 km 3 yr?1。

著录项

  • 作者

    TEIXEIRA A. H. de C.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号