首页> 外文OA文献 >Generalized splitting functions for blind separation of complex signals
【2h】

Generalized splitting functions for blind separation of complex signals

机译:通用分离功能,用于盲分离复杂信号

摘要

This paper proposes the blind separation of complex signals using a novel neural network architecture based on an adaptive nonlinear bi-dimensional activation function (AF); the separation is obtained maximizing the output joint entropy. Avoiding the restriction due to the Louiville's theorem, the AF is composed of a couple of bi-dimensional spline functions, one for the real and one for the imaginary part of the signal. The surface of this function is flexible and it is adaptively modified according to the learning process performed by a gradient-based technique. The use of the bi-dimensional spline defines a new class of flexible AFs which are bounded and locally analytic. This paper aims to demonstrate that this novel bi-dimensional complex AF outperforms the separation in every environment in which the real and imaginary parts of the complex signal are not dccorrelated. This situation is realistic ill a large number of cases. (C) 2008 Elsevier B.V. All rights reserved.
机译:本文提出了一种基于自适应非线性二维激活函数(AF)的新型神经网络架构,对复杂信号进行盲分离。获得最大的输出关节熵的分离。为避免因路易维尔定理而造成的限制,AF由几个二维样条函数组成,一个用于信号的实部,另一个用于信号的虚部。此功能的表面很灵活,可以根据基于梯度的技术执行的学习过程进行自适应修改。二维样条的使用定义了有界的局部分析的一类新的灵活AF。本文旨在证明,这种新颖的二维复杂自动对焦在复杂信号的实部和虚部都不直流相关的每个环境中均优于分离。在很多情况下,这种情况都是现实的。 (C)2008 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号