首页> 外文OA文献 >An automated pattern recognition system for classifying indirect immunofluorescence images for HEp-2 cells and specimens
【2h】

An automated pattern recognition system for classifying indirect immunofluorescence images for HEp-2 cells and specimens

机译:一个自动模式识别系统,用于对HEp-2细胞和标本的间接免疫荧光图像进行分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Immunofluorescence antinuclear antibody tests are important for diagnosis and management of autoimmune conditions; a key step that would benefit from reliable automation is the recognition of subcellular patterns suggestive of different diseases. We present a system to recognize such patterns, at cellular and specimen levels, in images of HEp-2 cells. Ensembles of SVMs were trained to classify cells into six classes based on sparse encoding of texture features with cell pyramids, capturing spatial, multi-scale structure. A similar approach was used to classify specimens into seven classes. Software implementations were submitted to an international contest hosted by ICPR 2014 (Performance Evaluation of Indirect Immunofluorescence Image Analysis Systems). Mean class accuracies obtained on heldout test set were 87.1% and 88.5% for cell and specimenclassification respectively. These were the highest achieved in the competition, suggesting our methods are state-of-the-art. We provide detailed descriptions and extensive experiments with various features and encoding methods.
机译:免疫荧光抗核抗体测试对自身免疫性疾病的诊断和管理很重要;从可靠的自动化中受益的关键步骤是识别暗示不同疾病的亚细胞模式。我们提出了一种系统来识别HEp-2细胞图像中细胞和样本水平的这种模式。对SVM的集合进行了训练,以使用细胞金字塔对纹理特征进行稀疏编码,从而将细胞分为六类,从而捕获空间的多尺度结构。使用类似的方法将标本分为七个类别。软件实现已提交给ICPR 2014主办的国际竞赛(间接免疫荧光图像分析系统的性能评估)。在保留测试集上获得的平均分类准确度分别为细胞分类和样本分类的87.1%和88.5%。这些是比赛中取得的最高成绩,表明我们的方法是最先进的。我们提供各种功能和编码方法的详细说明和广泛的实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号