首页> 外文OA文献 >Sub-Category Classifiers for Multiple-Instance Learning and its Application to Retinal Nerve Fiber Layer Visibility Classification
【2h】

Sub-Category Classifiers for Multiple-Instance Learning and its Application to Retinal Nerve Fiber Layer Visibility Classification

机译:多实例学习的子类别分类器及其在视网膜神经纤维层可见性分类中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a novel multiple instance learning method to assess the visibility (visible/not visible) of the retinal nerve fiber layer (RNFL) in fundus camera images. Using only image-level labels, our approach learns to classify the images as well as to localize the RNFL visible regions. We transformthe original feature space to a discriminative subspace, and learn a region-level classifier in that subspace. We propose a margin-based loss function to jointly learn this subspace and the region-level classifier. Experiments with a RNFL dataset containing 884 images annotated by two ophthalmologists givea system-annotator agreement (kappa values) of 0.73 and 0.72 respectively, with an inter-annotator agreement of 0.73. Our system agrees better with the more experienced annotator. Comparative tests with three public datasets (MESSIDOR and DR for diabetic retinopathy, UCSB for breast cancer)show that our novel MIL approach improves performance over the state-of-the-art. Our Matlab code is publicly available at https://github.com/ManiShiyam/Sub-category-classifiersfor-Multiple-Instance-Learning/wiki.
机译:我们提出了一种新颖的多实例学习方法来评估眼底照相机图像中视网膜神经纤维层(RNFL)的可见性(可见/不可见)。仅使用图像级标签,我们的方法就可以对图像进行分类以及定位RNFL可见区域。我们将原始特征空间转换为可区分的子空间,并在该子空间中学习区域级分类器。我们提出基于边际的损失函数,以共同学习该子空间和区域级分类器。使用包含884张图像的RNFL数据集进行的实验,该图像由两位眼科医生标注,系统标注者的一致性(kappa值)分别为0.73和0.72,标注间的一致性为0.73。我们的系统与经验丰富的注释者更好地达成共识。与三个公共数据集(用于糖尿病性视网膜病变的MESSIDOR和DR,用于乳腺癌的UCSB)进行的比较测试表明,我们的新型MIL方法比最新技术可以提高性能。我们的Matlab代码可从https://github.com/ManiShiyam/Sub-category-classifiersfor-Multiple-Instance-Learning/wiki公开获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号