首页> 外文OA文献 >Lexicon-based and immune system based learning methods in Twitter sentiment analysis
【2h】

Lexicon-based and immune system based learning methods in Twitter sentiment analysis

机译:Twitter情绪分析中基于词汇和免疫系统的学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, there are increasingly numbers of studies on seeking ways to mine Twitter for sentiment analysis. Machine learning approach such as immune system based learning methods is anudalternative way for sentiment classification.This method is centered on prominent immunologicaludtheory as computation mechanisms that emulateudprocesses in biological immune system in achievingudhigher probability for pattern recognition. The aim of this article attempts to study the potential of this method in text classification for sentiment analysis.This study consists of three phases; data preparation; classification model development using three selected Immune System based algorithms i.e. Negative Selection algorithm (NSA), Clonal Selection algorithm (CSA) and Immune Network algorithm (INA); and model analysis. As a result, NSA algorithm proposed slightly high accuracy in experimental phase and that would be considered as the potential classifiers for Twitter sentiment analysis. In future work, the accuracy of proposed model can be strengthened by comparative study with other heuristic based searching algorithms suchudas genetic algorithm, ant colony optimization, swam algorithms and etc.
机译:如今,越来越多的研究寻求挖掘Twitter的情绪分析方法。诸如基于免疫系统的学习方法之类的机器学习方法是情感分类的另一种方法。该方法以突出的免疫学/理论为中心,作为模仿机制,在生物免疫系统中实现更高的模式识别概率。本文的目的是试图研究这种方法在文本分类中进行情感分析的潜力。数据准备;使用三种选择的基于免疫系统的算法开发分类模型,即阴性选择算法(NSA),克隆选择算法(CSA)和免疫网络算法(INA);和模型分析。结果,NSA算法在实验阶段提出了较高的准确性,可以认为是Twitter情绪分析的潜在分类器。在将来的工作中,可以通过与其他基于启发式的搜索算法(如 udas遗传算法,蚁群优化,游泳算法等)进行比较研究来提高所提出模型的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号