首页> 外文OA文献 >Academic leadership bio-inspired classification model using negative selection algorithm
【2h】

Academic leadership bio-inspired classification model using negative selection algorithm

机译:基于否定选择算法的学术领导力生物启发式分类模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Negative selection algorithm has been successfully used in several purposes such as in fault detection, data integrity protection, virusuddetection and etc.due to the unique ability in self-recognition by classifying self or non-self’s detectors. Managing employee’s competency is considered as the top challenge for human resource professional especially in the process to determine the right person for the right job that is based on their competency.As an alternative approach, this article attempts to propose academic leadership bio-inspired classification model using negative selection algorithm to handle this issue.This study consists of three phases; data preparation, model development and model analysis. In the experimental phase, academic leadership competency data were collected from a selected higher learning institution as training data-set based on 10-fold cross validation.udSeveral experiments were carried out by using different set of training and testing data-sets to evaluate the accuracy of the proposed model.As audresult, the accuracy of the proposed model is considered excellent for academic leadership classification.For future work, in order to enhance the proposed bio-inspired classification model, a comparative study should be conducted using other established artificial immune system classification algorithms i.e. clonal selection and artificial immune network.
机译:负选择算法已成功用于多种目的,例如故障检测,数据完整性保护,病毒 uddetect等,这归因于通过对自身或非自身检测器进行分类来实现自我识别的独特能力。管理员工的能力被认为是人力资源专业人员面临的最大挑战,尤其是在根据其能力确定合适的人选的过程中。作为一种替代方法,本文尝试提出学术领导力生物启发的分类模型本研究分为三个阶段。数据准备,模型开发和模型分析。在实验阶段,基于10倍交叉验证,从选定的高等教育机构中收集了学术领导才能数据作为训练数据集。 ud通过使用不同的训练和测试数据集进行了多次实验,以评估因此,该模型的准确性被认为是学术领导力分类的最佳选择。对于以后的工作,为了增强该生物启发性分类模型,应该使用其他已建立的模型进行比较研究。人工免疫系统分类算法,即克隆选择和人工免疫网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号