首页> 外文OA文献 >Gasoline price forecasting: An application of LSSVM with improved ABC
【2h】

Gasoline price forecasting: An application of LSSVM with improved ABC

机译:汽油价格预测:具有改进的ABC的LSSVM的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optimizing the hyper-parameters of Least Squares Support Vector Machines (LSSVM) is crucial as it will directly influence the predictive power of the algorithm.To tackle such issue, this study proposes an improved Artificial Bee Colony (IABC) algorithm which is based on conventional mutation.The IABC serves as an optimizer for LSSVM.Realized in gasoline price forecasting, the performance is guided based on Mean Absolute Percentage Error (MAPE) and Root Mean Square Percentage Error (RMSPE).The conducted simulation results show that, the proposed IABCLSSVMudoutperforms the results produced by ABC-LSSVM and also the Back Propagation Neural Network.
机译:优化最小二乘支持向量机(LSSVM)的超参数至关重要,因为它会直接影响算法的预测能力。针对此问题,本研究提出了一种改进的基于人工蜂群(IABC)的算法IABC作为LSSVM的优化器,在汽油价格预测中实现了基于平均绝对百分比误差(MAPE)和均方根误差(RMSPE)的性能指导。仿真结果表明,提出的IABCLSSVM ud表现优于ABC-LSSVM和反向传播神经网络产生的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号