首页> 外文OA文献 >Predicting Multi-class Customer Profiles Based on Transactions: a Case Study in Food Sales
【2h】

Predicting Multi-class Customer Profiles Based on Transactions: a Case Study in Food Sales

机译:基于交易的多类别客户资料预测:食品销售中的案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Predicting the class of a customer profile is a key task in marketing, which enables businesses to approach the right customer with the right product at the right time through the right channel to satisfy the customer's evolving needs. However, due to costs, privacy and/or data protection, only the business' owned transactional data is typically available for constructing customer profiles. Predicting the class of customer profiles based on such data is challenging, as the data tends to be very large, heavily sparse and highly skewed. We present a new approach that is designed to efficiently and accurately handle the multi-class classification of customer profiles built using sparse and skewed transactional data. Our approach first bins the customer profiles on the basis of the number of items transacted. The discovered bins are then partitioned and prototypes within each of the discovered bins selected to build the multi-class classifier models. The results obtained from using four multi-class classifiers on real-world transactional data from the food sales domain consistently show the critical numbers of items at which the predictive performance of customer profiles can be substantially improved.
机译:预测客户档案的类别是市场营销中的关键任务,它使企业能够通过正确的渠道在正确的时间,正确的时间用正确的产品吸引正确的顾客,以满足顾客不断变化的需求。但是,由于成本,隐私和/或数据保护的原因,通常只有企业拥有的交易数据可用于构建客户资料。基于此类数据预测客户资料的类别具有挑战性,因为数据往往非常大,稀疏且高度偏斜。我们提出了一种新方法,旨在有效,准确地处理使用稀疏和偏斜交易数据构建的客户资料的多类分类。我们的方法首先根据交易的商品数量对客户资料进行分类。然后对发现的容器进行分区,并在每个发现的容器中选择原型以构建多类分类器模型。通过对来自食品销售领域的真实交易数据使用四个多分类器获得的结果始终显示出关键数量的物品,在这些物品上,客户资料的预测性能可以得到显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号