首页> 外文OA文献 >Link prediction methods and their accuracy for different social networks and network metrics
【2h】

Link prediction methods and their accuracy for different social networks and network metrics

机译:不同社交网络和网络指标的链接预测方法及其准确性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Currently, we are experiencing a rapid growth of the number of social–based online systems. The availability of the vast amounts of data gathered in those systems brings new challenges that we face when trying to analyse it. One of the intensively researched topics is the prediction of social connections between users. Although a lot of effort has been made to develop new prediction approaches that could provide a better prediction accuracy in social networked structures extracted from large–scale data about people and their activities and interactions, the existing methods are not comprehensively analysed. Presented in this paper, research focuses on the link prediction problem in which in a systematic way, we investigate the correlation between network metrics and accuracy of different prediction methods. For this study we selected six time–stamped real world social networks and ten most widely used link prediction methods. The results of our experiments show that the performance of some methods have a strong correlation with certain network metrics. We managed to distinguish ’prediction friendly’ networks, for which most of the prediction methods give good performance, as well as ’prediction unfriendly’ networks, for which most of the methods result in high prediction error. The results of the study are a valuable input for development of a new prediction approach which may be for example based on combination of several existing methods. Correlation analysis between network metrics and prediction accuracy of different methods may form the basis of a metalearning system where based on network characteristics and prior knowledge will be able to recommend the right prediction method for a given network at hand.
机译:当前,我们正在经历基于社交的在线系统数量的快速增长。这些系统中收集的大量数据的可用性带来了我们在分析数据时面临的新挑战。深入研究的主题之一是预测用户之间的社交联系。尽管已经做出了很多努力来开发新的预测方法,这些方法可以在从有关人及其活动和互动的大规模数据中提取的社交网络结构中提供更好的预测准确性,但是现有方法并未得到全面分析。本文提出的研究重点是链路预测问题,在该问题中,我们以系统的方式研究了网络指标与不同预测方法的准确性之间的相关性。在本研究中,我们选择了六个带时间戳的真实世界社交网络和十个使用最广泛的链接预测方法。我们的实验结果表明,某些方法的性能与某些网络指标具有很强的相关性。我们设法区分了“预测友好”网络和“预测不友好”网络,“预测友好”网络的大多数预测方法都具有良好的性能,而“预测不友好”网络的大多数方法会导致较高的预测误差。研究结果为开发新的预测方法提供了宝贵的信息,该方法可以例如基于几种现有方法的组合。网络指标与不同方法的预测准确性之间的相关性分析可以构成金属学习系统的基础,其中基于网络特性和先验知识将能够为手头的给定网络推荐正确的预测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号