首页> 外文OA文献 >Análise do efeito do tempo da moagem de alta energia no tamanho de cristalito e microdeformação da rede cristalina do WC-Co
【2h】

Análise do efeito do tempo da moagem de alta energia no tamanho de cristalito e microdeformação da rede cristalina do WC-Co

机译:高能磨削时间对WC-Co晶体网络的晶粒尺寸和微形变的影响分析

摘要

Hard metals are the composite developed in 1923 by Karl Schröter, with wide application because high hardness, wear resistance and toughness. It is compound by a brittle phase WC and a ductile phase Co. Mechanical properties of hardmetals are strongly dependent on the microstructure of the WC Co, and additionally affected by the microstructure of WC powders before sintering. An important feature is that the toughness and the hardness increase simultaneously with the refining of WC. Therefore, development of nanostructured WC Co hardmetal has been extensively studied. There are many methods to manufacture WC-Co hard metals, including spraying conversion process, co-precipitation, displacement reaction process, mechanochemical synthesis and high energy ball milling. High energy ball milling is a simple and efficient way of manufacturing the fine powder with nanostructure. In this process, the continuous impacts on the powders promote pronounced changes and the brittle phase is refined until nanometric scale, bring into ductile matrix, and this ductile phase is deformed, re-welded and hardened. The goal of this work was investigate the effects of highenergy milling time in the micro structural changes in the WC-Co particulate composite, particularly in the refinement of the crystallite size and lattice strain. The starting powders were WC (average particle size D50 0.87 μm) supplied by Wolfram, Berglau-u. Hutten - GMBH and Co (average particle size D50 0.93 μm) supplied by H.C.Starck. Mixing 90% WC and 10% Co in planetary ball milling at 2, 10, 20, 50, 70, 100 and 150 hours, BPR 15:1, 400 rpm. The starting powders and the milled particulate composite samples were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) to identify phases and morphology. The crystallite size and lattice strain were measured by Rietveld s method. Thisprocedure allowed obtaining more precise information about the influence of each one in the microstructure. The results show that high energy milling is efficient manufacturing process of WC-Co composite, and the milling time have great influence in the microstructure of the final particles, crushing and dispersing the finely WC nanometric order in the Co particles
机译:硬质金属是卡尔·施罗特(KarlSchröter)在1923年开发的复合材料,具有高硬度,耐磨性和韧性,因此具有广泛的用途。它是由脆相WC和韧性相Co混合而成的。硬质合金的机械性能在很大程度上取决于WC Co的微观结构,并且在烧结之前还受到WC粉末的微观结构的影响。一个重要的特征是,随着WC的细化,韧性和硬度同时增加。因此,已经广泛研究了纳米结构的WC Co硬质合金的开发。有许多制造WC-Co硬质金属的方法,包括喷涂转化工艺,共沉淀,置换反应工艺,机械化学合成和高能球磨。高能球磨是制造具有纳米结构的细粉的简单有效的方法。在此过程中,对粉末的连续冲击会引起明显的变化,脆性相将细化直至纳米级,并进入可延展基体,然后该可延展相变形,重新焊接并硬化。这项工作的目的是研究高能研磨时间对WC-Co颗粒复合材料微观结构变化的影响,尤其是对微晶尺寸和晶格应变的细化。起始粉末是由Berglau-u的Wolfram提供的WC(平均粒径D50为0.87μm)。由H.C. Starck提供的Hutten-GMBH and Co(平均粒径D50为0.93μm)。在BPR 15:1、400 rpm的2、10、20、50、70、100和150小时的行星球磨中混合90%WC和10%Co。通过X射线衍射(XRD)和扫描电子显微镜(SEM)对起始粉末和磨碎的颗粒状复合样品进行表征,以鉴定相和形态。晶粒尺寸和晶格应变通过Rietveld方法测量。该过程允许获得关于每个微观结构的影响的更精确的信息。结果表明,高能研磨是制备WC-Co复合材料的有效方法,研磨时间对最终颗粒的微观结构,细碎的WC纳米级颗粒在Co颗粒中的破碎和分散有重要影响。

著录项

  • 作者

    Pinto Gislâine Bezerra;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 por
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号