首页> 外文OA文献 >Paralelização em GPU da segmentação vascular com extração de Centerlines por Height Ridges
【2h】

Paralelização em GPU da segmentação vascular com extração de Centerlines por Height Ridges

机译:GPU并行化血管分割并通过Height Ridges提取中心线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The vascular segmentation is important in diagnosing vascular diseases like strokeand is hampered by noise in the image and very thin vessels that can pass unnoticed.One way to accomplish the segmentation is extracting the centerline of the vessel withheight ridges, which uses the intensity as features for segmentation. This process cantake from seconds to minutes, depending on the current technology employed. In orderto accelerate the segmentation method proposed by Aylward [Aylward & Bullitt 2002]we have adapted it to run in parallel using CUDA architecture. The performance of thesegmentation method running on GPU is compared to both the same method runningon CPU and the original Aylward s method running also in CPU. The improvemente ofthe new method over the original one is twofold: the starting point for the segmentationprocess is not a single point in the blood vessel but a volume, thereby making it easier forthe user to segment a region of interest, and; the overall gain method was 873 times fasterrunning on GPU and 150 times more fast running on the CPU than the original CPU inAylward
机译:血管分割在诊断中风等血管疾病中很重要,并且会受到图像噪声和非常细小的血管的阻碍,这种细小血管可能会被忽略而无法通过。完成分割的一种方法是提取带有高脊的血管中心线,该中心线使用强度作为特征分割。根据当前使用的技术,此过程可能需要几秒钟到几分钟。为了加速Aylward [Aylward&Bullitt 2002]提出的分割方法,我们对其进行了修改,使其可以使用CUDA架构并行运行。将在GPU上运行的这些细分方法的性能与在CPU上运行的相同方法和也在CPU中运行的原始Aylward的方法进行了比较。新方法相对于原始方法的改进有两个方面:分割过程的起点不是血管中的单个点,而是体积,从而使用户更容易分割感兴趣区域;以及与Aylward中的原始CPU相比,整体增益方法在GPU上运行速度快873倍,在CPU上运行速度快150倍

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号