首页> 外文OA文献 >Predição da incrustação em um trocador de calor baseada em redes neurais artificiais
【2h】

Predição da incrustação em um trocador de calor baseada em redes neurais artificiais

机译:基于人工神经网络的换热器结垢预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A serious problem that affects an oil refinery s processing units is the deposition of solid particles or the fouling on the equipments. These residues are naturally present on the oil or are by-products of chemical reactions during its transport. A fouled heat exchanger loses its capacity to adequately heat the oil, needing to be shut down periodically for cleaning. Previous knowledge of the best period to shut down the exchanger may improve the energetic and production efficiency of the plant. In this work we develop a system to predict the fouling on a heat exchanger from the Potiguar Clara Camarão Refinery, based on data collected in a partnership with Petrobras. Recurrent Neural Networks are used to predict the heat exchanger s flow in future time. This variable is the main indicator of fouling, because its value decreases gradually as the deposits on the tubes reduce their diameter. The prediction could be used to tell when the flow will have decreased under an acceptable value, indicating when the exchanger shutdown for cleaning will be needed
机译:影响炼油厂处理单元的一个严重问题是固体颗粒的沉积或设备上的结垢。这些残留物自然存在于油中,或者是其运输过程中化学反应的副产物。结垢的热交换器失去了充分加热油的能力,需要定期关闭以进行清洁。有关关闭交换器的最佳时期的先前知识可以提高工厂的能量和生产效率。在这项工作中,我们基于与巴西国家石油公司(Petrobras)合作收集的数据,开发了一个系统来预测Potiguar ClaraCamarão炼油厂的热交换器结垢。递归神经网络用于预测将来的热交换器流量。该变量是结垢的主要指标,因为其值随着管子上沉积物直径的减小而逐渐减小。该预测可用于指示何时流量将减少到可接受的值以下,指示何时需要关闭换热器进行清洁

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号