首页> 外文OA文献 >Biocathodic Methanogenic Community in an Integrated Anaerobic Digestion and Microbial Electrolysis System for Enhancement of Methane Production from Waste Sludge
【2h】

Biocathodic Methanogenic Community in an Integrated Anaerobic Digestion and Microbial Electrolysis System for Enhancement of Methane Production from Waste Sludge

机译:集成厌氧消化和微生物电解系统中的生物阴极产甲烷菌群落,可提高废污泥甲烷的产生

摘要

Understanding the microbial community structure relative to enhancement of methane production from digestion of waste-activated sludge (WAS) coupled with a bioelectrochemical system is a key scientific question for the potential application of bioelectrochemistry in biogas production. Little has been known about the influence of electrode on the structure and function of microbial communities, especially methanogens in a bioelectrochemical anaerobic digestion (AD) reactor. Here, a hybrid reactor, which coupled bioelectrolysis and AD, was developed to enhance methane recovery from WAS. The methane production rate reached up to 0.0564 m(3) methane/(m(3) reactor*d) in the hybrid reactor at room temperature, which was nearly double than that of the control anaerobic reactor (0.0259 m(3) methane/(m(3)reactor*d)) without bioelectrochemical device. Microbial community analysis revealed that hydrogenotrophic methanogen Methanobacterium dominated the cathode biofilm, which was the predominant contributor to accelerate the methane production rate from WAS. While acetoclastic methanogen Methanosaeta was enriched in the sludge phase of all reactors, shifts of the microbial community structure of the biocathode was in significant correlation with the methane production. This study suggested a potential way to utilize a bioelectrochemical system with the regulated microbial community to enhance methane production from WAS.
机译:了解与生物活性化学系统结合的废物活化污泥(WAS)的消化产生甲烷的能力与提高微生物产生有关​​的微生物群落结构是生物电化学在沼气生产中潜在应用的关键科学问题。关于电极对微生物群落结构和功能的影响知之甚少,特别是在生物电化学厌氧消化(AD)反应器中的产甲烷菌。在这里,开发了一种混合反应器,其结合了生物电解和AD,以提高从WAS回收甲烷的能力。在室温下,混合反应器中的甲烷生产率最高可达0.0564 m(3)甲烷/(m(3)反应器* d),几乎是对照厌氧反应器(0.0259 m(3)甲烷/ (m(3)反应器* d)),无需生物电化学装置。微生物群落分析表明,氢营养型产甲烷甲烷菌在阴极生物膜上占主导地位,这是加速WAS甲烷生成速率的主要因素。尽管乙酰碎屑产甲烷菌甲烷菌在所有反应器的污泥相中富集,但生物阴极微生物群落结构的变化与甲烷的产生显着相关。这项研究提出了一种潜在的方法,可以利用具有受控微生物群落的生物电化学系统来提高WAS的甲烷产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号