首页> 外文OA文献 >High-Performance Prediction of Molten Steel Temperature in Tundish through Gray-Box Model
【2h】

High-Performance Prediction of Molten Steel Temperature in Tundish through Gray-Box Model

机译:通过灰箱模型对中间包中钢水温度的高性能预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel gray-box model is proposed to estimate molten steel temperature in a continuous casting process at a steel making plant by combining a first-principle model and a statistical model. The first-principle model was developed on the basis of computational fluid dynamics (CFD) simulations to simplify the model and to improve estimation accuracy. Since the derived first-principle model was not able to estimate the molten steel temperature in the tundish with sufficient accuracy, statistical models were developed to estimate the estimation errors of the first-principle model through partial least squares (PLS) and random forest (RF). As a result of comparing the three models, i.e., the first-principle model, the PLS-based gray-box model, and the RF-based gray-box model, the RF-based gray-box model achieved the best estimation performance. Thus, the molten steel temperature in the tundish can be estimated with accuracy by adding estimates of the first-principle model and those of the statistical RF model. The proposed gray-box model was applied to the real process data and the results demonstrated its advantage over other models.
机译:提出了一种新颖的灰箱模型,通过结合第一原理模型和统计模型来估算炼钢厂连续铸造过程中的钢水温度。在计算流体动力学(CFD)模拟的基础上开发了第一原理模型,以简化模型并提高估计精度。由于导出的第一原理模型无法以足够的精度估算中间包中的钢水温度,因此开发了统计模型以通过偏最小二乘(PLS)和随机森林(RF)估算第一原理模型的估算误差。 )。通过比较三个模型,即第一原理模型,基于PLS的灰盒模型和基于RF的灰盒模型,基于RF的灰盒模型获得了最佳的估计性能。因此,通过添加第一原理模型的估计和统计RF模型的估计,可以准确地估计中间包中的钢水温度。所提出的灰箱模型被应用于实际过程数据,结果证明了其相对于其他模型的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号