首页> 外文OA文献 >Multilevel Redundancy Allocation Optimization Using Hierarchical Genetic Algorithm
【2h】

Multilevel Redundancy Allocation Optimization Using Hierarchical Genetic Algorithm

机译:基于层次遗传算法的多级冗余分配优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a generalized formulation for multilevel redundancy allocation problems that can handle redundancies for each unit in a hierarchical reliability system, with structures containing multiple layers of subsystems and components. Multilevel redundancy allocation is an especially powerful approach for improving the system reliability of such hierarchical configurations, and system optimization problems that take advantage of this approach are termed multilevel redundancy allocation optimization problems (MRAOP). Despite the growing interest in MRAOP, a survey of the literature indicates that most redundancy allocation schemes are mainly confined to a single level, and few problem-specific MRAOP have been proposed or solved. The design variables in MRAOP are hierarchically structured. This paper proposes a new variable coding method in which these hierarchical design variables are represented by two types of hierarchical genotype, termed ordinal node, and terminal node. These genotypes preserve the logical linkage among the hierarchical variables, and allow every possible combination of redundancy during the optimization process. Furthermore, this paper developed a hierarchical genetic algorithm (HGA) that uses special genetic operators to handle the hierarchical genotype representation of hierarchical design variables. For comparison, the customized HGA, and a conventional genetic algorithm (GA) in which design variables are coded in vector forms, are applied to solve MRAOP for series systems having two different configurations. The solutions obtained when using HGA are shown to be superior to the conventional GA solutions, indicating that the HGA here is especially suitable for solving MRAOP for series systems.
机译:本文针对多级冗余分配问题提出了一种通用的表述,该问题可以处理具有分层子系统和组件的多层结构的分层可靠性系统中每个单元的冗余。多级冗余分配是提高此类分层配置的系统可靠性的一种特别强大的方法,利用此方法的系统优化问题称为多级冗余分配优化问题(MRAOP)。尽管人们对MRAOP的兴趣日益浓厚,但对文献的调查表明,大多数冗余分配方案主要局限于单个级别,很少提出或解决特定于问题的MRAOP。 MRAOP中的设计变量是分层结构的。本文提出了一种新的变量编码方法,其中这些分层设计变量由两种类型的分层基因型表示,分别称为序数节点和终端节点。这些基因型保留了层次变量之间的逻辑联系,并允许在优化过程中进行冗余的所有可能组合。此外,本文开发了一种层次遗传算法(HGA),该算法使用特殊的遗传算子来处理层次设计变量的层次基因型表示。为了进行比较,将定制的HGA和将设计变量以矢量形式编码的常规遗传算法(GA)用于求解具有两种不同配置的串联系统的MRAOP。使用HGA时获得的解决方案显示出优于常规GA解决方案,表明此处的HGA特别适合解决串联系统的MRAOP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号