首页> 外文OA文献 >Empirical Bayesian significance measure of neuronal spike response
【2h】

Empirical Bayesian significance measure of neuronal spike response

机译:神经元突波反应的经验贝叶斯显着性度量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Functional connectivity analyses of multiple neurons provide a powerful bottom-up approach to reveal functions of local neuronal circuits by using simultaneous recording of neuronal activity. A statistical methodology, generalized linear modeling (GLM) of the spike response function, is one of the most promising methodologies to reduce false link discoveries arising from pseudo-correlation based on common inputs. Although recent advancement of fluorescent imaging techniques has increased the number of simultaneously recoded neurons up to the hundreds or thousands, the amount of information per pair of neurons has not correspondingly increased, partly because of the instruments' limitations, and partly because the number of neuron pairs increase in a quadratic manner. Consequently, the estimation of GLM suffers from large statistical uncertainty caused by the shortage in effective information. Results: In this study, we propose a new combination of GLM and empirical Bayesian testing for the estimation of spike response functions that enables both conservative false discovery control and powerful functional connectivity detection. We compared our proposed method's performance with those of sparse estimation of GLM and classical Granger causality testing. Our method achieved high detection performance of functional connectivity with conservative estimation of false discovery rate and q values in case of information shortage due to short observation time. We also showed that empirical Bayesian testing on arbitrary statistics in place of likelihood-ratio statistics reduce the computational cost without decreasing the detection performance. When our proposed method was applied to a functional multi-neuron calcium imaging dataset from the rat hippocampal region, we found significant functional connections that are possibly mediated by AMPA and NMDA receptors. Conclusions: The proposed empirical Bayesian testing framework with GLM is promising especially when the amount of information per a neuron pair is small because of growing size of observed network.
机译:背景:多个神经元的功能连接性分析提供了一种强大的自下而上方法,可通过同时记录神经元活动来揭示局部神经元回路的功能。统计方法,即尖峰响应函数的广义线性建模(GLM),是减少基于通用输入的伪相关引起的虚假链接发现的最有前途的方法之一。尽管荧光成像技术的最新发展使同时重新编码的神经元的数量增加到数百或数千,但每对神经元的信息量并未相应增加,部分原因是仪器的局限性,部分原因是神经元的数量对以二次方增加。因此,由于有效信息的缺乏,对GLM的估计存在很大的统计不确定性。结果:在这项研究中,我们提出了GLM和经验贝叶斯测试的新组合,用于估计峰值响应函数,该函数既可以实现保守的错误发现控制,又可以进行强大的功能连接检测。我们将我们提出的方法的性能与GLM的稀疏估计和经典Granger因果关系测试的性能进行了比较。我们的方法通过对错误发现率和q值的保守估计来实现功能连接的高检测性能,以防由于观察时间短而导致信息短缺。我们还表明,对任意统计量进行经验贝叶斯检验代替似然比统计量,可以降低计算成本,而不会降低检测性能。当我们提出的方法应用于来自大鼠海马区的功能性多神经元钙成像数据集时,我们发现了可能由AMPA和NMDA受体介导的重要功能连接。结论:提出的带有GLM的经验贝叶斯测试框架是有希望的,特别是当每个神经元对的信息量很小时,这是因为观察到的网络越来越大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号