首页> 外文OA文献 >Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids
【2h】

Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids

机译:具有系统密度函数理论计算的机器学习:在单组分和二组分固体的熔融温度中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A combination of systematic density-functional theory (DFT) calculations and machine learning techniques has a wide range of potential applications. This study presents an application of the combination of systematic DFT calculations and regression techniques to the prediction of the melting temperature for single and binary compounds. Here we adopt the ordinary least-squares regression, partial least-squares regression, support vector regression, and Gaussian process regression. Among the four kinds of regression techniques, SVR provides the best prediction. The inclusion of physical properties computed by the DFT calculation to a set of predictor variables makes the prediction better. In addition, limitation of the predictive power is shown when extrapolation from the training dataset is required. Finally, a simulation to find the highest melting temperature toward the efficient materials design using kriging is demonstrated. The kriging design finds the compound with the highest melting temperature much faster than random designs. This result may stimulate the application of kriging to efficient materials design for a broad range of applications.
机译:系统密度函数理论(DFT)计算和机器学习技术的结合具有广泛的潜在应用。这项研究提出了将系统DFT计算和回归技术结合起来用于预测单一和二元化合物熔化温度的应用。在这里,我们采用普通最小二乘回归,偏最小二乘回归,支持向量回归和高斯过程回归。在四种回归技术中,SVR提供最佳预测。通过DFT计算计算出的物理属性包含在一组预测变量中,可以使预测更好。另外,当需要从训练数据集外推时,显示了预测能力的局限性。最后,展示了一种模拟方法,该方法通过使用克里金法可以找到最高的熔化温度,从而实现高效的材料设计。克里金法设计发现熔点最高的化合物比随机设计快得多。这一结果可能会刺激克里金法在高效材料设计中的广泛应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号