首页> 外文OA文献 >Interest in new heterodinuclear transition-metal/main-group-metal complexes: DFT study of electronic structure and mechanism of fluoride sensing function.
【2h】

Interest in new heterodinuclear transition-metal/main-group-metal complexes: DFT study of electronic structure and mechanism of fluoride sensing function.

机译:对新型异双核过渡金属/主族金属配合物的兴趣:DFT研究电子结构和氟化物传感功能的机理。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Systematic DFT calculations were carried out on a series of heterodinuclear complexes [(o-(Ph2P)C6H4)3M(1)M(2)Cl](+) (M(1) = As, Sb, or Bi; M(2) = Pd or Pt) to investigate the mechanism of colorimetric sensing function for the fluoride anion. The fluoride anion binds with the M(1) center to afford a hypervalent M(1) species with large stabilization energy. For instance, the stabilization energy by the fluoride adduct formation is -15.5 kcal mol(-1) for 3 (M(1) = Sb; M(2) = Pd) and -16.2 kcal mol(-1) for 6 (M(1) = Sb; M(2) = Pt), where a negative value represents stabilization. Interestingly, the allosteric coordination of the third phosphine with the M(2) center is induced by the fluoride adduct formation. For chloride, bromide, and thiocyanide anions, the binding energies are positive (~4.5 kcal mol(-1)), and the allosteric coordination does not occur. The allosteric coordination plays a crucial role in the absorption spectrum change induced by the fluoride adduct formation. For instance, the fluoride adduct formation quenches the absorption band of 3 around 400 nm and newly exhibits two absorption peaks at longer wavelength, 475 and 451 nm. These two peaks are assigned to ligand-field transitions (d(xy)→ d(z(2)) and d(x(2)-y(2))→ d(z(2))) including metal-to-ligand charge transfer character. We discussed the reasons why the allosteric coordination can occur only in the fluoride adduct and induces these two absorptions in the longer wavelength region. In addition, the Bi-Pd combination is also recommended for a fluoride sensing material, while the Sb-Pt combination is recommended for cyanide sensing.
机译:系统DFT计算是对一系列异双核络合物[(o-(Ph2P)C6H4)3M(1)M(2)Cl](+)(M(1)= As,Sb或Bi; M(2 )= Pd或Pt),以研究氟阴离子的比色传感功能机理。氟阴离子与M(1)中心结合,提供具有较大稳定能的超价M(1)物质。例如,氟化物加成物形成的稳定能对于3(M(1)= Sb; M(2)= Pd)为-15.5 kcal mol(-1),对于6(M则为-16.2 kcal mol(-1) (1)= Sb; M(2)= Pt),其中负值表示稳定。有趣的是,氟化物加合物的形成诱导了第三膦与M(2)中心的变构配位。对于氯离子,溴离子和硫氰酸根阴离子,结合能为正(〜4.5 kcal mol(-1)),并且不会发生变构配位。变构配位在氟化物加合物形成引起的吸收光谱变化中起关键作用。例如,氟化物加合物的形成淬灭了400 nm附近3的吸收带,并在更长的波长475和451 nm处新出现了两个吸收峰。这两个峰分配给配体场跃迁(d(xy)→d(z(2))和d(x(2)-y(2))→d(z(2))),包括金属到配体电荷转移特性。我们讨论了为什么变构配位只能在氟化物加合物中发生并在较长波长范围内诱导这两种吸收的原因。此外,还建议将Bi-Pd组合用于氟化物感测材料,而建议将Sb-Pt组合用于氰化物感测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号