首页> 外文OA文献 >Exact and heuristic methods for network completion for time-varying genetic networks.
【2h】

Exact and heuristic methods for network completion for time-varying genetic networks.

机译:时变遗传网络完成网络的精确和启发式方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Robustness in biological networks can be regarded as an important feature of living systems. A system maintains its functions against internal and external perturbations, leading to topological changes in the network with varying delays. To understand the flexibility of biological networks, we propose a novel approach to analyze time-dependent networks, based on the framework of network completion, which aims to make the minimum amount of modifications to a given network so that the resulting network is most consistent with the observed data. We have developed a novel network completion method for time-varying networks by extending our previous method for the completion of stationary networks. In particular, we introduce a double dynamic programming technique to identify change time points and required modifications. Although this extended method allows us to guarantee the optimality of the solution, this method has relatively low computational efficiency. In order to resolve this difficulty, we developed a heuristic method for speeding up the calculation of minimum least squares errors. We demonstrate the effectiveness of our proposed methods through computational experiments using synthetic data and real microarray gene expression data. The results indicate that our methods exhibit good performance in terms of completing and inferring gene association networks with time-varying structures.
机译:生物网络的健壮性可以被视为生命系统的重要特征。系统维护其功能以防止内部和外部干扰,从而导致网络拓扑变化,并具有不同的延迟。为了了解生物网络的灵活性,我们提出了一种基于网络完成框架的分析时间相关网络的新颖方法,该方法旨在对给定网络进行最少的修改,从而使最终网络与观察到的数据。通过扩展用于固定网络完成的先前方法,我们为时变网络开发了一种新颖的网络完成方法。特别是,我们引入了双重动态编程技术来识别更改时间点和所需的修改。尽管这种扩展方法允许我们保证解的最优性,但该方法的计算效率相对较低。为了解决这个困难,我们开发了一种启发式方法来加快最小最小二乘误差的计算。我们通过使用合成数据和实际微阵列基因表达数据的计算实验证明了我们提出的方法的有效性。结果表明,我们的方法在完成和推断具有时变结构的基因关联网络方面表现出良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号