首页> 外文OA文献 >Online Unsupervised Classification with Model Comparison in the Variational Bayes Framework for Voice Activity Detection
【2h】

Online Unsupervised Classification with Model Comparison in the Variational Bayes Framework for Voice Activity Detection

机译:语音活动检测的变分贝叶斯框架中具有模型比较的在线无监督分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new online, unsupervised method for Voice Activity Detection (VAD) is proposed. The conventional VAD methods often rely on heuristics to adapt the decision threshold to the estimated SNR. The proposed VAD method is based on the Variational Bayes (VB) approach to the online Expectation Maximization (EM), so that it can automatically adapt the decision level and the statistical model at the same time. We consider two parallel classifiers, one for the noise-only case, and the other for speech-and-noise case. Both models are trained concurrently and online using the VB framework. The VB framework also provides an explicit approximation of the log evidence called free energy. It is used to assess the reliability of the classifier in an online fashion, and to decide which model is more appropriate at a given time frame. Experimental evaluations were conducted on the CENSREC-1-C database designed for VAD evaluations. With the effect of the model comparison, the proposed scheme outperforms the conventional VAD algorithms, especially in the remote recording condition. It is also shown to be more robust with respect to changes of the noise type.
机译:提出了一种新的在线,无人监督的语音活动检测(VAD)方法。常规的VAD方法通常依靠启发式方法来使决策阈值适应估计的SNR。提出的VAD方法基于变分贝叶斯(VB)方法进行在线期望最大化(EM),从而可以同时自动适应决策水平和统计模型。我们考虑两个并行分类器,一个用于纯噪声情况,另一个用于语音和噪声情况。两种模型都使用VB框架同时在线进行培训。 VB框架还提供了称为自由能的对数证据的显式近似。它用于以在线方式评估分类器的可靠性,并确定在给定时间范围内哪种模型更合适。在专为VAD评估而设计的CENSREC-1-C数据库上进行了实验评估。在模型比较的影响下,该方案优于传统的VAD算法,尤其是在远程记录条件下。对于噪声类型的变化,它也显示出更强健。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号