首页> 外文OA文献 >Purification of aqueous electrolyte solutions by air-cooled natural freezing
【2h】

Purification of aqueous electrolyte solutions by air-cooled natural freezing

机译:通过风冷自然冷冻纯化电解质水溶液

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Freeze crystallization is a particular type of a purification method where the solventfreezes out, which constricts the volume of the solution, leaving thus behind a moreconcentrated solution. In the case of freezing an aqueous solution, water is the solventwhich crystallizes and can be separated from the concentrated solution by the virtue ofbuoyancy. In an ideal situation, freeze crystallization of an aqueous solution produces icecrystals that do not contain any of the impurities present in the original solution. As theprocess continues, the original solution becomes more concentrated and the freezingtemperature declines progressively.Freezing point depression (FPD) is of vital importance in characterising the freezingbehaviour of any solution. Due to this necessity, a new calculation method to predict FPDis presented in this work. In this method, designated ion-interaction parameters for thePitzer model are extracted from reliable FPD data found in the literature, other thancalorimetric data. The extracted parameters from FPD data are capable of predicting thefreezing point more accurately than those resulted from the calorimetric data. Thecalculation method is exemplified for numerous 1-1 and 1-2 types of electrolytes.Impurities in excess of the maximum recommended limits must be removed fromwastewater prior to discharge because of their persistent bio-accumulative anddetrimental nature. Natural freezing is suggested in the present work as a purificationtechnique to treat huge volumes of wastewater in a sustainable and energy-efficientmanner. The efficiency of freeze crystallization in the purification of wastewater byimitating natural freezing in a developed winter simulation with the provision of alteringwinter conditions is scrutinized in this thesis. Hence, natural freezing is simulatedexperimentally for ice crystallization from unsaturated aqueous Na2SO4 and NiSO4solutions to assess the feasibility of such a technique to be used to purify wastewaterscontaining electrolytes. This work presents a series of data in similitude of naturalfreezing of water from aqueous Na2SO4 and NiSO4 solutions in various concentrationsand freezing conditions. The influence of solution concentration and different freezingconditions, such as ambient temperature, freezing time and freezing rate, on the efficiency of the purification process is investigated by analysing the effective distributioncoefficient (K) of the solute between ice and the solution. The experimental resultsdemonstrate clearly that high purity ice can be obtained from slow freezing of the solutionwith the concentration typically found in industrial wastewater.During freeze crystallization, the diffusion of impurities from the solid-liquid interface tothe bulk of the solution, along with the growth mechanism of the solid phase play animportant role in determining the purity of the ice layer. Therefore, a calculation methodis introduced to estimate the concentration of the solution at the advancing ice–solutioninterface in terms of the limiting distribution coefficient (K*) from experimental K valuesat different growth conditions. The heat transfer -controlled growth rate of the ice limitedby the free convective heat transfer coefficient of air (hair) rather than the thermalconductivity of the ice (kice) and the heat transfer coefficient of the solution (hsol) wasfound to prevail over the mass transfer of rejected solute molecules from the ice–solution interface to the bulk solution of experimental interest. A simplified and robust model is developed to estimate the thickness and growth rate of the ice layer formed from solutions at different freezing conditions, and the model is validated with experimental results. In addition, inclusion formation within the ice matrix during freezing is investigated for various solution concentrations, both macroscopically and microscopically.
机译:冻结结晶是纯化方法的一种特殊类型,其中溶剂会冻结,这会限制溶液的体积,从而留下浓度更高的溶液。在冷冻水溶液的情况下,水是结晶的溶剂,并且可以借助浮力从浓缩溶液中分离出来。在理想情况下,水溶液的冻结结晶会产生不包含原始溶液中存在的任何杂质的冰晶。随着过程的继续,原始溶液变得更加浓缩,冷冻温度逐渐降低。凝固点降低(FPD)对于表征任何溶液的冷冻行为至关重要。由于这种必要性,这项工作提出了一种新的预测FPDis的计算方法。在这种方法中,从比色法数据以外的文献中找到的可靠FPD数据中提取了Pitzer模型的指定离子相互作用参数。从FPD数据中提取的参数比从量热数据得到的参数能够更准确地预测凝固点。大量1-1和1-2类型的电解质都采用了这种计算方法,由于其持久的生物蓄积性和有害性,必须在排放废水之前从废水中去除超过最大推荐限值的杂质。在当前的工作中,建议采用自然冷冻作为一种净化技术,以一种可持续且节能的方式处理大量废水。本文研究了在冬季条件变化的条件下通过模拟自然冻结来模拟自然冻结过程中冻结结晶结晶的效率。因此,为了从不饱和的Na2SO4和NiSO4水溶液中结晶冰,实验性地模拟了自然冷冻,以评估这种技术用于纯化含电解质废水的可行性。这项工作提供了一系列有关各种浓度和冷冻条件下从Na2SO4和NiSO4水溶液中水自然冷冻的模拟数据。通过分析冰与溶液之间溶质的有效分配系数(K),研究了溶液浓度和不同的冷冻条件(如环境温度,冷冻时间和冷冻速率)对纯化过程效率的影响。实验结果清楚地表明,以工业废水中常见的浓度缓慢冷冻溶液可以得到高纯度的冰。在冷冻结晶过程中,杂质从固液界面向溶液主体的扩散以及生长机理固相的含量在确定冰层的纯度方面起着重要作用。因此,引入了一种计算方法,可以根据不同生长条件下的实验K值,根据极限分布系数(K *)估算前进的冰-溶液界面处溶液的浓度。发现受空气(毛发)的自由对流传热系数而不是冰的热导率(kice)限制的冰的传热控制增长率高于溶液的传质(hsol)和溶液的传热系数(hsol)。从冰-溶液界面到实验感兴趣的本体溶液中的排斥溶质分子的数量。建立了一个简化且健壮的模型来估计在不同冷冻条件下由溶液形成的冰层的厚度和增长率,并用实验结果对该模型进行了验证。此外,在宏观和微观上研究了各种溶液浓度下冷冻过程中冰基质内夹杂物的形成。

著录项

  • 作者

    Hasan Mehdi;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号