首页> 外文OA文献 >Evaluating multidimensional visualization techniques in data mining tasks
【2h】

Evaluating multidimensional visualization techniques in data mining tasks

机译:在数据挖掘任务中评估多维可视化技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Visual data mining (VDM) tools employ information visualization techniques in order to represent large amounts of high-dimensional data graphically and to involve the user in exploring data at different levels of detail. The users are looking for outliers, patterns and models – in the form of clusters, classes, trends, and relationships – in different categories of data, i.e., financial, business information, etc. The focus of this thesis is the evaluation of multidimensional visualization techniques, especially from the business user’s perspective. We address three research problems. The first problem is the evaluation of projection-based visualizations with respect to their effectiveness in preserving the original distances between data points and the clustering structure of the data. In this respect, we propose the use of existing clustering validity measures. We illustrate their usefulness in evaluating five visualization techniques: Principal Components Analysis (PCA), Sammon’s Mapping, Self-Organizing Map (SOM), Radial Coordinate Visualization and Star Coordinates. The second problem is concerned with evaluating different visualization techniques as to their effectiveness in visual data mining of business data. For this purpose, we propose an inquiry evaluation technique and conduct the evaluation of nine visualization techniques. The visualizations under evaluation are Multiple Line Graphs, Permutation Matrix, Survey Plot, Scatter Plot Matrix, Parallel Coordinates, Treemap, PCA, Sammon’s Mapping and the SOM. The third problem is the evaluation of quality of use of VDM tools. We provide a conceptual framework for evaluating the quality of use of VDM tools and apply it to the evaluation of the SOM. In the evaluation, we use an inquiry technique for which we developed a questionnaire based on the proposed framework.The contributions of the thesis consist of three new evaluation techniques and the results obtained by applying these evaluation techniques. The thesis provides a systematic approach to evaluation of various visualization techniques. In this respect, first, we performed and described the evaluations in a systematic way, highlighting the evaluation activities, and their inputs and outputs. Secondly, we integrated the evaluation studies in the broad framework of usability evaluation.The results of the evaluations are intended to help developers and researchers of visualization systems to select appropriate visualization techniques in specific situations. The results of the evaluations also contribute to the understanding of the strengths and limitations of the visualization techniques evaluated and further to the improvement of these techniques.
机译:可视数据挖掘(VDM)工具采用信息可视化技术,以便以图形方式表示大量的高维数据,并使用户参与探索不同细节级别的数据。用户正在以不同类别的数据(例如财务,业务信息等)寻找聚类,类,趋势和关系形式的离群值,模式和模型。本文的重点是对多维可视化的评估技术,尤其是从业务用户的角度来看。我们解决了三个研究问题。第一个问题是关于基于投影的可视化在保留数据点之间的原始距离和数据的聚类结构方面的有效性方面的评估。在这方面,我们建议使用现有的聚类有效性度量。我们将说明它们在评估五种可视化技术方面的有用性:主成分分析(PCA),Sammon映射,自组织映射(SOM),径向坐标可视化和星形坐标。第二个问题与评估不同的可视化技术在业务数据的可视数据挖掘中的有效性有关。为此,我们提出了一种查询评估技术,并进行了九种可视化技术的评估。评估中的可视化是多线图,置换矩阵,测量图,散点图矩阵,平行坐标,树形图,PCA,Sammon的映射和SOM。第三个问题是对VDM工具使用质量的评估。我们提供了一个概念框架来评估VDM工具的使用质量,并将其应用于SOM评估。在评估中,我们使用了一种查询技术,并根据提出的框架为其开发了一份问卷。论文的贡献包括三种新的评估技术以及通过应用这些评估技术获得的结果。本文为评估各种可视化技术提供了一种系统的方法。在这方面,首先,我们以系统的方式进行和描述了评估,重点介绍了评估活动及其输入和输出。其次,我们将评估研究整合到可用性评估的广泛框架中,评估的结果旨在帮助可视化系统的开发人员和研究人员在特定情况下选择合适的可视化技术。评估结果还有助于理解所评估的可视化技术的优势和局限性,并进一步改善这些技术。

著录项

  • 作者

    Marghescu Dorina;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号