We report a facile in situ synthesis of spherical copper nanoparticles (NPs) templated by a gelled cellulose II matrix under alkaline aqueous reaction conditions. In under 20 min, the hybrid material could be obtained in a one-pot reaction. Field-emission scanning electron microscopy (FE-SEM) revealed that the polycrystalline NPs of 200–500 nm were well distributed in the regenerated cellulose matrix. The average Cu crystallite size was of the order of 20 nm, as estimated from both X-ray diffraction (XRD) and FE-SEM. XRD data also indicated that the composite contained up to approximately 20% Cu2O. In suspensions containing the hybrid material, growth of Escerichia coli and Staphylococcus aureus strains was inhibited by 80% and 95%, respectively, after 72 h. The synthesis procedure offers a general approach to designing various low-cost hybrid materials of almost any shape, and the concept could be extended to utilization areas such as catalysis, functional textiles, and food packaging as well as to electronic applications.
展开▼