首页> 外文OA文献 >An industrial 3D vision system for size measurement of iron ore green pellets using morphological image segmentation
【2h】

An industrial 3D vision system for size measurement of iron ore green pellets using morphological image segmentation

机译:工业3D视觉系统,用于使用形态学图像分割测量铁矿石绿色小球的尺寸

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An industrial prototype 3D imaging and analysis system has been developed that measures the pellet sieve size distribution into 9 sieve size classes between 5mm and 16+mm. The system is installed and operational at a pellet production plant capturing and analysing 3D surface data of piled pellets on the conveyor belt. It provides fast, frequent, non-contact, consistent measurement of the pellet sieve size distribution and opens the door to autonomous closed loop control of the pellet balling disk or drum in the future. Segmentation methods based on mathematical morphology are applied to the 3D surface data to identify individual pellets. Determination of the entirely visible pellets is made using a new two feature classification, the advantage being that this system eliminates the resulting bias due to sizing partially visible (overlapped) particles based on their limited visible profile. Literature review highlights that in the area of size measurement of pellets and rocks, no other researchers make this distinction between entirely and partially visible particles. Sizing is performed based on best-fit-rectangle, classified into size classes based on one quarter of the measured sieving samples, and then compared against the remaining sieve samples.
机译:已开发出工业原型3D成像和分析系统,该系统可将颗粒筛尺寸分布测量为5mm至16 + mm之间的9种筛尺寸。该系统在颗粒生产厂安装并运行,可捕获并分析传送带上堆积颗粒的3D表面数据。它提供了对颗粒筛尺寸分布的快速,频繁,非接触式一致的测量,并为将来对颗粒球或圆盘的自动闭环控制打开了大门。将基于数学形态学的分割方法应用于3D表面数据以识别单个颗粒。使用新的两个特征分类确定完全可见的颗粒,其优点是该系统消除了由于基于有限的可见轮廓对部分可见(重叠)的颗粒进行尺寸调整而导致的偏差。文献综述强调,在颗粒和岩石的尺寸测量领域,没有其他研究人员对完全可见和部分可见的颗粒进行区分。根据最佳拟合矩形进行大小确定,然后基于四分之一的测量筛分样本将其分类为尺寸类别,然后与其余的筛分样本进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号