首页> 外文OA文献 >Face Detection using Local SMQT Features and Split Up SNoW Classifier
【2h】

Face Detection using Local SMQT Features and Split Up SNoW Classifier

机译:使用本地SMQT功能和拆分SNoW分类器的人脸检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The purpose of this paper is threefold: firstly, the local Successive Mean Quantization Transform features are proposed for illumination and sensor insensitive operation in object recognition. Secondly, a split up Sparse Network of Winnows is presented to speed up the original classifier. Finally, the features and classifier are combined for the task of frontal face detection. Detection results are presented for the MIT+CMU and the BioID databases. With regard to this face detector, the Receiver Operation Characteristics curve for the BioID database yields the best published result. The result for the CMU+MIT database is comparable to state-of-the-art face detectors. A Matlab version of the face detection algorithm can be downloaded from http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=13701&o bjectType=FILE
机译:本文的目的有三个方面:首先,提出了局部连续均值量化变换特征,用于目标识别中的照明和传感器不敏感操作。其次,提出了一个分离的Winnows稀疏网络,以加快原始分类器的速度。最后,将特征和分类器组合起来以进行正面人脸检测。给出了MIT + CMU和BioID数据库的检测结果。对于此面部检测器,BioID数据库的“接收器操作特征”曲线可产生最佳的发布结果。 CMU + MIT数据库的结果可与最新的面部检测器相媲美。可以从http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=13701&o bjectType = FILE下载Matlab版本的面部检测算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号