首页> 外文OA文献 >Global Optimization of Microwave Filters Based on a Surrogate Model Assisted Evolutionary Algorithm
【2h】

Global Optimization of Microwave Filters Based on a Surrogate Model Assisted Evolutionary Algorithm

机译:基于替代模型辅助进化算法的微波滤波器全局优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Local optimization is a routine approach for full-wave optimization of microwave filters. For filter optimization problems with numerous local optima or where the initial design is not near to the optimal region, the success rate of the routine method may not be high. Traditional global optimization techniques have a high success rate for such problems, but are often prohibitively computationally expensive considering the cost of full-wave electromagnetic simulations. To address the above challenge, a new method, called surrogate model-assisted evolutionary algorithm for filter optimization (SMEAFO), is proposed. In SMEAFO, considering the characteristics of filter design landscapes, Gaussian process surrogate modeling, differential evolution operators, and Gaussian local search are organized in a particular way to balance the exploration ability and the surrogate model quality, so as to obtain high-quality results in an efficient manner. The performance of SMEAFO is demonstrated by two real-world design cases (a waveguide filter and a microstrip filter), which do not appear to be solvable by popular local optimization techniques. Experiments show that SMEAFO obtains high-quality designs comparable with global optimization techniques but within a reasonable amount of time. Moreover, SMEAFO is not restricted by certain types of filters or responses. The SMEAFO-based filter design optimization tool can be downloaded from http://fde.cadescenter.com.
机译:局部优化是微波滤波器全波优化的常规方法。对于具有众多局部最优值或初始设计不接近最优区域的滤波器优化问题,常规方法的成功率可能不高。传统的全局优化技术对于此类问题具有很高的成功率,但考虑到全波电磁仿真的成本,其计算量往往过高。为了解决上述挑战,提出了一种新的方法,称为代理模型辅助的滤波器优化进化算法(SMEAFO)。在SMEAFO中,考虑到过滤器设计格局的特点,以一种特殊的方式组织了高斯过程替代模型,微分演化算子和高斯局部搜索,以平衡探索能力和替代模型质量,从而获得高质量的结果。有效的方式。通过两个实际的设计案例(波导滤波器和微带滤波器)证明了SMEAFO的性能,这两个案例似乎无法通过流行的局部优化技术解决。实验表明,SMEAFO可在合理的时间内获得与全局优化技术相当的高质量设计。此外,SMEAFO不受某些类型的过滤器或响应的限制。可以从http://fde.cadescenter.com下载基于SMEAFO的滤波器设计优化工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号