首页> 外文OA文献 >A network that performs brute-force conversion of a temporal sequence to a spatial pattern: relevance to odor recognition
【2h】

A network that performs brute-force conversion of a temporal sequence to a spatial pattern: relevance to odor recognition

机译:一个执行从时间序列到空间模式的强力转换的网络:与气味识别相关

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A classic problem in neuroscience is how temporal sequences (TSs) can be recognized. This problem is exemplified in the olfactory system, where an odor is defined by the TS of olfactory bulb (OB) output that occurs during a sniff. This sequence is discrete because the output is subdivided by gamma frequency oscillations. Here we propose a new class of "brute-force" solutions to recognition of discrete sequences. We demonstrate a network architecture in which there are a small number of modules, each of which provides a persistent snapshot of what occurs in a different gamma cycle. The collection of these snapshots forms a spatial pattern (SP) that can be recognized by standard attractor-based network mechanisms. We will discuss the implications of this strategy for recognizing odor-specific sequences generated by the OB.
机译:神经科学中的一个经典问题是如何识别时间序列(TS)。这个问题在嗅觉系统中得到了体现,其中气味是由嗅闻期间发生的嗅觉灯泡(OB)输出的TS所定义的。该序列是离散的,因为输出被伽马频率振荡细分。在这里,我们提出了一类新的“蛮力”解决方案来识别离散序列。我们演示了一种网络体系结构,其中包含少量模块,每个模块都提供有关在不同伽玛循环中发生的情况的持久快照。这些快照的集合形成了可被基于标准吸引子的网络机制识别的空间模式(SP)。我们将讨论该策略对识别OB生成的气味特定序列的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号