首页> 外文OA文献 >EEG filtering based on blind source separation (BSS) for early detection of Alzheimer's disease
【2h】

EEG filtering based on blind source separation (BSS) for early detection of Alzheimer's disease

机译:基于盲源分离(BSS)的脑电图过滤可早期发现阿尔茨海默氏病

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objective: Development of an EEG preprocessing technique for improvement of detection of Alzheimer’s disease (AD). The technique is based on filtering of EEG data using blind source separation (BSS) and projection of components which are possibly sensitive to cortical neuronal impairment found in early stages of AD. Method: Artifact-free 20 s intervals of raw resting EEG recordings from 22 patients with Mild Cognitive Impairment (MCI) who later proceeded to AD and 38 age-matched normal controls were decomposed into spatio-temporally decorrelated components using BSS algorithm ‘AMUSE’. Filtered EEG was obtained by back projection of components with the highest linear predictability. Relative power of filtered data in delta, theta, alpha1, alpha2, beta1, and beta 2 bands were processed with Linear Discriminant Analysis (LDA). Results: Preprocessing improved the percentage of correctly classified patients and controls computed with jack-knifing cross-validation from 59 to 73% and from 76 to 84%, correspondingly. Conclusions: The proposed approach can significantly improve the sensitivity and specificity of EEG based diagnosis. Significance: Filtering based on BSS can improve the performance of the existing EEG approaches to early diagnosis of Alzheimer’s disease. It may also have potential for improvement of EEG classification in other clinical areas or fundamental research. The developed method is quite general and flexible, allowing for various extensions and improvements. q 2004 Published by Elsevier Ireland Ltd. on behalf of International Federation of Clinical Neurophysiology.
机译:目的:开发一种脑电预处理技术,以改善对阿尔茨海默氏病(AD)的检测。该技术基于使用盲源分离(BSS)对脑电数据进行过滤,并对可能对AD早期发现的皮质神经元损伤敏感的成分进行投影。方法:将22位轻度认知障碍(MCI)患者(后来发展至AD)和38位年龄相匹配的正常对照的20 s原始静止EEG记录的无假象间隔,使用BSS算法“ AMUSE”分解为时空相关的组件。通过对具有最高线性可预测性的组件进行反向投影,可以获得经过过滤的脑电图。使用线性判别分析(LDA)处理delta,theta,alpha1,alpha2,beta1和beta 2波段中的已过滤数据的相对功率。结果:预处理将通过杰克-刀叉交叉验证计算得出的正确分类的患者和对照的百分比从59%提高到73%,从76%提高到84%。结论:所提出的方法可以显着提高基于脑电图的诊断的敏感性和特异性。意义:基于BSS的过滤可以改善现有的EEG方法对阿尔茨海默氏病的早期诊断的性能。在其他临床领域或基础研究中,它也可能具有改善脑电分类的潜力。所开发的方法非常通用且灵活,可以进行各种扩展和改进。 q 2004年,由Elsevier Ireland Ltd.代表国际临床神经生理学联合会出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号