首页> 外文OA文献 >A Diagnostic Calculator for Detecting Glaucoma on the Basis of Retinal Nerve Fiber Layer, Optic Disc, and Retinal Ganglion Cell Analysis by Optical Coherence Tomography
【2h】

A Diagnostic Calculator for Detecting Glaucoma on the Basis of Retinal Nerve Fiber Layer, Optic Disc, and Retinal Ganglion Cell Analysis by Optical Coherence Tomography

机译:基于视网膜神经纤维层,视盘和视网膜神经节细胞分析的光学相干断层扫描检测青光眼的诊断计算器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Purpose: The purpose of this study was to develop and validate a multivariate predictive model to detect glaucoma by using a combination of retinal nerve fiber layer (RNFL), retinal ganglion cell-inner plexiform (GCIPL), and optic disc parameters measured using spectral-domain optical coherence tomography (OCT).udMethods: Five hundred eyes from 500 participants and 187 eyes of another 187 participants were included in the study and validation groups, respectively. Patients with glaucoma were classified in five groups based on visual field damage. Sensitivity and specificity of all glaucoma OCT parameters were analyzed. Receiver operating characteristic curves (ROC) and areas under the ROC (AUC) were compared. Three predictive multivariate models (quantitative, qualitative, and combined) that used a combination of the best OCT parameters were constructed. A diagnostic calculator was created using the combined multivariate model.udResults: The best AUC parameters were: inferior RNFL, average RNFL, vertical cup/disc ratio, minimal GCIPL, and inferior-temporal GCIPL. Comparisons among the parameters did not show that the GCIPL parameters were better than those of the RNFL in early and advanced glaucoma. The highest AUC was in the combined predictive model (0.937; 95% confidence interval, 0.911–0.957) and was significantly (P = 0.0001) higher than the other isolated parameters considered in early and advanced glaucoma. The validation group displayed similar results to those of the study group.udConclusions: Best GCIPL, RNFL, and optic disc parameters showed a similar ability to detect glaucoma. The combined predictive formula improved the glaucoma detection compared to the best isolated parameters evaluated. The diagnostic calculator obtained good classification from participants in both the study and validation groups.
机译:目的:本研究的目的是通过结合使用视网膜神经纤维层(RNFL),视网膜神经节细胞内神经丛(GCIPL)和视盘参数,通过光谱神经光谱仪的开发,开发并验证用于检测青光眼的多变量预测模型。方法:来自500名参与者的500只眼和另外187名参与者的187只眼被分别纳入研究和验证组。根据视野损害,将青光眼患者分为五组。分析了所有青光眼OCT参数的敏感性和特异性。比较接收器工作特性曲线(ROC)和ROC下面积(AUC)。构建了使用最佳OCT参数组合的三个预测性多元模型(定量,定性和组合)。使用组合的多元模型创建了诊断计算器。 ud结果:最佳AUC参数为:RNFL下限,平均RNFL,垂直杯/盘比,最小GCIPL和下颞GCIPL。参数之间的比较未显示在早期和晚期青光眼中,GCIPL参数优于RNFL。在联合预测模型中,AUC最高(0.937; 95%置信区间为0.911-0.957),并且显着(P = 0.0001)高于在早期和晚期青光眼中考虑的其他孤立参数。验证组显示出与研究组相似的结果。 ud结论:最佳GCIPL,RNFL和视盘参数显示出类似的检测青光眼的能力。与评估的最佳孤立参数相比,组合的预测公式改善了青光眼的检测。诊断计算器从研究组和验证组的参与者中获得了良好的分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号