首页> 外文OA文献 >Multiple-input multiple-output vs. single-input single-output neural network forecasting
【2h】

Multiple-input multiple-output vs. single-input single-output neural network forecasting

机译:多输入多输出与单输入单输出神经网络预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study attempts to improve the forecasting accuracy of tourism demand by using the existing common trends in tourist arrivals form all visitor markets to a specific destination in a multiple-input multiple-output (MIMO) structure. While most tourism forecasting research focuses on univariate methods, we compare the performance of three different Artificial Neural Networks in a multivariate setting that takes into account the correlations in the evolution of inbound international tourism demand to Catalonia (Spain). We find that the MIMO approach does not outperform the forecasting accuracy of the networks when applied country by country, but it significantly improves the forecasting performance for total tourist arrivals. When comparing the forecast accuracy of the different models, we find that radial basis function networks outperform multilayer-perceptron and Elman networks.
机译:这项研究试图通过利用多输入多输出(MIMO)结构中从特定市场到特定目的地的所有游客市场的游客到达率的现有普遍趋势来提高旅游需求的预测准确性。虽然大多数旅游业预测研究都集中在单变量方法上,但我们在考虑到国际旅游需求向加泰罗尼亚(西班牙)发展演变的相关性的多变量环境中比较了三种不同人工神经网络的性能。我们发现,在逐个国家/地区应用MIMO方法时,其性能并不能超过网络的预测精度,但可以显着提高总游客到达量的预测性能。当比较不同模型的预测准确性时,我们发现径向基函数网络优于多层感知器网络和Elman网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号