首页> 外文OA文献 >To select or to weigh: a comparative study of linear combination schemes for superparent-one-dependence estimators
【2h】

To select or to weigh: a comparative study of linear combination schemes for superparent-one-dependence estimators

机译:选择还是权衡:超亲一依赖估计量的线性组合方案的比较研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.
机译:我们对线性组合超亲一依赖估计量(SPODEs)(一种流行的半朴素贝叶斯分类器家族)进行了大规模比较研究。总共使用了16种模型选择和权衡方案,58种基准数据集以及各种统计测试。本文的主要贡献是三方面的。首先,它正式介绍了每个方案的定义,原理和时间复杂度,因此可以作为对集成学习感兴趣的研究人员的全面参考。其次,它为每种方案的分类错误性能提供偏差方差分析。第三,它确定了可以在实践中满足各种需求的有效方案。这导致了准确,快速的分类算法,对实际应用产生了直接而重大的影响。我们研究的另一个重要特征是使用各种统计测试来评估跨多个数据集的多种学习方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号