首页> 外文OA文献 >On-line event detection by recursive dynamic principal component analysis and gas sensor arrays under drift conditions
【2h】

On-line event detection by recursive dynamic principal component analysis and gas sensor arrays under drift conditions

机译:在漂移条件下通过递归动态主成分分析和气体传感器阵列进行在线事件检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Leakage detection is an important issue in many chemical sensing applications. Leakage detection hy thresholds suffers from important drawbacks when sensors have serious drifts or they are affected by cross-sensitivities. Here we present an adaptive method based in a Dynamic Principal Component Analysis that models the relationships between the sensors in the may. In normal conditions a certain variance distribution characterizes sensor signals. However, in the presence of a new source of variance the PCA decomposition changes drastically. In order to prevent the influence of sensor drifts the model is adaptive and it is calculated in a recursive manner with minimum computational effort. The behavior of this technique is studied with synthetic signals and with real signals arising by oil vapor leakages in an air compressor. Results clearly demonstrate the efficiency of the proposed method.
机译:泄漏检测是许多化学传感应用中的重要问题。当传感器漂移严重或受到交叉灵敏度影响时,泄漏检测高阈值会遭受重大缺陷。在这里,我们提出了一种基于动态主成分分析的自适应方法,该方法可对可能的传感器之间的关系进行建模。在正常情况下,一定的方差分布是传感器信号的特征。但是,在存在新的方差源的情况下,PCA分解会急剧变化。为了防止传感器漂移的影响,该模型是自适应的,并且以最少的计算工作量以递归方式进行计算。通过合成信号和由空气压缩机中的油蒸气泄漏引起的实际信号来研究此技术的行为。结果清楚地证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号