首页> 外文OA文献 >UNIT ROOT INFERENCE FOR NON-STATIONARY LINEAR PROCESSES DRIVEN BY INFINITE VARIANCE INNOVATIONS
【2h】

UNIT ROOT INFERENCE FOR NON-STATIONARY LINEAR PROCESSES DRIVEN BY INFINITE VARIANCE INNOVATIONS

机译:无限方差创新驱动的非平稳线性过程的单位根推论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Copyright © Cambridge University Press 2016 The contribution of this paper is two-fold. First, we derive the asymptotic null distribution of the familiar augmented Dickey-Fuller [ADF] statistics in the case where the shocks follow a linear process driven by infinite variance innovations. We show that these distributions are free of serial correlation nuisance parameters but depend on the tail index of the infinite variance process. These distributions are shown to coincide with the corresponding results for the case where the shocks follow a finite autoregression, provided the lag length in the ADF regression satisfies the same o(T 1/3 ) rate condition as is required in the finite variance case. In addition, we establish the rates of consistency and (where they exist) the asymptotic distributions of the ordinary least squares sieve estimates from the ADF regression. Given the dependence of their null distributions on the unknown tail index, our second contribution is to explore sieve wild bootstrap implementations of the ADF tests. Under the assumption of symmetry, we demonstrate the asymptotic validity (bootstrap consistency) of the wild bootstrap ADF tests. This is done by establishing that (conditional on the data) the wild bootstrap ADF statistics attain the same limiting distribution as that of the original ADF statistics taken conditional on the magnitude of the innovations.
机译:版权所有©剑桥大学出版社,2016年本论文的贡献有两个方面。首先,在冲击遵循由无限方差创新驱动的线性过程的情况下,我们推导了熟悉的增强Dickey-Fuller [ADF]统计量的渐近零分布。我们表明,这些分布没有序列相关扰动参数,但取决于无限方差过程的尾部索引。如果ADF回归中的滞后长度满足有限方差情况下所要求的相同的o(T 1/3)速率条件,则表明这些分布与冲击遵循有限自回归的情况下的相应结果一致。此外,我们建立了ADF回归的普通最小二乘筛估计值的一致率和(在存在的情况下)渐近分布。给定它们的零分布对未知尾部索引的依赖性,我们的第二个贡献是探索ADF测试的筛分野生引导程序实现。在对称性的假设下,我们证明了野生自举ADF测试的渐近有效性(自举一致性)。这是通过确定(基于数据)野生引导ADF统计数据达到与原始ADF统计数据相同的限制分布而得出的,而原始ADF统计数据则取决于创新的规模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号