首页> 外文OA文献 >Frequency Domain Estimation of Cointegrating Vectors with Mixed Frequency and Mixed Sample Data
【2h】

Frequency Domain Estimation of Cointegrating Vectors with Mixed Frequency and Mixed Sample Data

机译:具有混合频率和混合样本数据的协整向量的频域估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a model suitable for exploiting fully the information contained in mixed frequency and mixed sample data in the estimation of cointegrating vectors. The asymptotic properties of easy-to-compute spectral regression estimators of the cointegrating vectors are derived and these estimators are shown to belong to the class of optimal cointegration estimators. Furthermore, Wald statistics based on these estimators have asymptotic chi-square distributions which enable inferences to be made straightforwardly. Simulation experiments suggest that the finite sample performance of a spectral regression estimator in an augmented mixed frequency model is particularly encouraging as it is capable of dramatically reducing the root mean squared error obtained in an entirely low frequency model to the levels comparable to an infeasible high frequency model. The finite sample size and power properties of the Wald statistic are also found to be good. An empirical example, to stock price and dividend data, is provided to demonstrate the methods in practice.
机译:本文提出了一种模型,该模型可充分利用混合频率和混合样本数据中包含的信息来估计协整向量。推导了协整向量的易于计算的频谱回归估计量的渐近性质,这些估计量表明属于最优协整估计量的类别。此外,基于这些估计量的Wald统计量具有渐近的卡方分布,可直接进行推断。仿真实验表明,在增强的混合频率模型中频谱回归估计器的有限样本性能特别令人鼓舞,因为它能够将在完全低频模型中获得的均方根误差显着降低到与不可行的高频相当的水平模型。 Wald统计量的有限样本大小和幂属性也被认为是很好的。提供了一个有关股票价格和股息数据的经验示例,以说明实践中的方法。

著录项

  • 作者

    Chambers MJ;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号