首页> 外文OA文献 >Social-Aware Edge Caching in Fog Radio Access Networks
【2h】

Social-Aware Edge Caching in Fog Radio Access Networks

机译:雾无线电接入网络中的社交感知边缘缓存

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fog radio access networks (F-RANs) are becoming an emerging and promising paradigm for fifth generation cellular communication systems. In F-RANs, distributed edge caching techniques among remote radio heads (RRHs) and user equipment (UE) can effectively alleviate the burdens on the fronthaul toward the base band unit pool and the bandwidth of the RANs. However, it is still not clear as to how social relationships affect the performance of edge caching schemes. This paper attempts to analyze the impact of mobile social networks (MSNs) on the performance of edge caching in F-RANs. We propose a Markov-chain-based model to analyze edge caching among edge nodes (i.e., RRHs and MSNs), as well as data sharing among the potential MSNs from the viewpoint of content diffusion in the F-RANs. Moreover, we analyze the edge caching schemes among UE to minimize the bandwidth consumption in the RANs. Finally, the optimal edge caching strategies among RRHs in terms of caching locations and time are introduced to minimize the bandwidth consumption of fronthaul and storage costs in the F-RANs. Simulation results show that the proposed edge caching schemes among UE and RRHs are able to reduce the bandwidth consumption of RANs and fronthaul effectively.
机译:雾无线电接入网(F-RAN)正在成为第五代蜂窝通信系统的新兴和有希望的范例。在F-RAN中,远程无线电头端(RRH)和用户设备(UE)之间的分布式边缘缓存技术可以有效地减轻对基带单元池的前传的负担以及RAN的带宽。但是,关于社交关系如何影响边缘缓存方案的性能,目前尚不清楚。本文尝试分析移动社交网络(MSN)对F-RAN中边缘缓存性能的影响。我们提出了一种基于马尔可夫链的模型来分析边缘节点(即RRH和MSN)之间的边缘缓存,以及从F-RAN中内容扩散的角度来分析潜在MSN之间的数据共享。此外,我们分析了UE之间的边缘缓存方案,以最小化RAN中的带宽消耗。最后,在缓存位置和时间方面引入了RRH之间的最佳边缘缓存策略,以最小化F-RAN中前传的带宽消耗和存储成本。仿真结果表明,所提出的UE和RRH之间的边缘缓存方案能够有效减少RAN的带宽消耗和前传。

著录项

  • 作者

    Wang X; Leng S; Yang K;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号