首页> 外文OA文献 >Regression analysis for estimation of the influencing factors on road accident injuries in Oman Poisson Regression Model and Poisson Alternatives
【2h】

Regression analysis for estimation of the influencing factors on road accident injuries in Oman Poisson Regression Model and Poisson Alternatives

机译:用阿曼泊松回归模型和泊松替代方法估算道路交通伤害影响因素的回归分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Road safety programs use statistical models to predict the occurrence of accidents and casualties and to identify the influencing factors that affect their occurrence. They are also used to identify the causes of an accident and the hazardous locations where more accidents happen (the hot spots or black spots). Causal factors could depend on human behaviour, road geometries, traffic volumes, weather, or the interactions among these. For decision makers, it is very important to understand road patterns and behaviours to apply road safety improvements and road maintenance activities effciently. Statistical modelling of road safety is conducted by taking the data of past accidents and the attributes of many sites and using them to produce the best prediction models. The objective is to discover the relationship between a function of the dependent variable (e.g., expected number of accidents at a certain point), E(Yi) = λi, in relation to number of covariates, Xi1, Xi2, Xi3 ,....Xik that are assumed to have an effect on the dependent variable Yi. It is a standard practice in road safety research to model accident counts Yi as Poisson distributed random variables that Yi ~ Pois (λi) corresponds to a random distribution of the accidents over time and space. Accident data have often been shown to exhibit overdispersion, which make it essential to use alternatives of Poisson to model such data. In this research, we apply the Poisson regression model and its alternatives in addition to the binary and ordered probit logistic regression model.
机译:道路安全计划使用统计模型来预测事故和人员伤亡的发生,并确定影响事故和人员伤亡的影响因素。它们还用于确定事故原因和发生更多事故的危险位置(热点或黑点)。原因因素可能取决于人类的行为,道路几何形状,交通量,天气或这些因素之间的相互作用。对于决策者而言,了解道路模式和行为以有效地应用道路安全改进和道路维护活动非常重要。道路安全的统计建模是通过收集过去事故的数据以及许多站点的属性,并使用它们来生成最佳预测模型来进行的。目的是发现因变量的函数(例如,某点的预期事故数量)E(Yi)=λi与协变量数Xi1,Xi2,Xi3等之间的关系。假定对因变量Yi有影响的.Xik。道路安全研究的标准实践是将事故计数Yi建模为Poisson分布随机变量,即Yi〜Pois(λi)对应于事故随时间和空间的随机分布。事故数据通常显示出过度分散,因此必须使用泊松的替代方法对此类数据进行建模。在这项研究中,除了二进制和有序的概率逻辑回归模型之外,我们还应用了泊松回归模型及其替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号