首页> 外文OA文献 >Integrated photonic devices for optical pulse shaping,udprocessing and measurement.
【2h】

Integrated photonic devices for optical pulse shaping,udprocessing and measurement.

机译:用于光脉冲整形的集成光子器件处理和测量。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the last decade significant increase in internet access, high speed communication, highuddefinition media streaming and high volume cloud storage have affected our daily lives. This hasudresulted in an unprecedented demand in the speed and volume of data transfer. To overcome theudsevere speed limitations of present electronic circuits, which are practically limited to processingudand switching speeds below a few tens of GHz, all-optical or alternatively electro-optical solutionsudhave attracted considerable attention, offering generation/processing speeds from 10s of GHz toudseveral THz. Over the years engineers have moved light ever closer to the heart of computingudsystems, the microprocessor, in order to keep up with the switching and processing speeds requiredudto manipulate the gigantic amount of data being passed to telecommunication networks. This topicudis particularly important for applications in data centers (Data centers consist of a large group of networked computer servers typically used by organizations for theudremote storage, processing, or distribution of large amounts of data.), due to the limitations of electronicsudcircuits and copper wires in handling and processing high data rates.udIn particular, silicon photonics is seen as a great foundation for optics and electronics to meet.udLeveraging from mature complementary metal oxide semiconductor (CMOS) fabrication process,udsilicon photonics offers wafer scale testing, low cost packaging, scaling to high levels of integration,udsolves electrical interconnect limitation in data centers, supercomputers and integrated circuits.udDespite all the advantages offered by silicon photonics, it has been mostly implemented inudinterconnects and/or switching applications in industry. Significant effort has been put intouddevelopment of signal processing building blocks, which already exist in electronics, alternativelyudin optical domain with unprecedented operation bandwidths (processing speeds). These signaludprocessors generally fall into two categories: (1) linear optics and (2) nonlinear optics-baseduddevices. Linear optics signal processors are of higher interest in telecommunications, because theyudusually work with lower levels of power (few to tens of milliwatts). These processors offer 100 toud1000 times improvement in processing speed as compared with their electronic counterparts.udThe main objective of this Thesis is to develop integrated photonics devices for on-chip opticaludpulse shaping, processing and measurement. The Thesis includes proposals and developments ofudnovel theories, designs, numerical analysis, layout preparations and experimental demonstrations.udSpecific accomplishements of this Thesis include:uda) Proposal and development of a novel theoretical frame work, namely discrete space-totimeudmapping in cascaded co-directional couplers, enabling practical on-chip arbitraryudoptical pulse shaping with time resolutions ranging from a few femtoseconds up to the subnanosecondudregime.udb) Modelling, layout design and experimental demonstration of on-chip optical pulse shapinguddevices based on discrete space-to-time mapping theory. Demonstrated functionalitiesudinclude: (1) high quality sub-picosecond/picosecond flat-top pulse generation; (2)udTsymbol/s optical phase coded bit-packet generation; (3) Tsymbol/s optical phase andudamplitude coded bit-packet generation.udc) Proposal and development of a nondispersive, tunable band-pass/band-reject filteringudscheme using photonics Hilbert transformers (PHTs) incorporated in a Michelsonudinterferometer. By controlling the central frequency of PHTs with respect to each other,udboth the central frequency and the spectral width of the rejection/pass bands of the filterudare proved to be tunable. In this project bandwidth tuning from 260 MHz to 60 GHz isudnumerically demonstrated using two readily feasible fiber Bragg grating-based PHTs. Theuddesigned filter offers a high extinction ratio between the pass band and rejection bandud(>20dB in the narrow-band filtering case) with a very sharp transition with a slope of 170-uddB/GHz from rejection to pass band.udd) Proposal, modelling, layout design and experimental demonstration of on-chip fractionaludand integer-order PHTs on silicon-on-insulator (SOI) wafer, based on laterally apodizedudintegrated waveguide Bragg gratings. In this work high-performance photonic integer andudfractional-order Hilbert transformers, with processing bandwidths above 750 GHz, haveudbeen experimentally realized.ude) Experimental demonstration of on-chip, single-shot and real-time phase characterizationudof GHz-rate optical telecommunication signals. In particular, phase reconstruction basedudon optical ultrafast differentiation (PROUD) is implemented using an integratedwaveguideudMach-Zehnder Interferometer (MZI) to demonstrate self-referenced phaseudcharacterization of GHz-rate complex modulated signals (e.g. Quadrature Phase ShiftudKeying(QPSK), and Amplitude Phase Shift Keying (APSK) modulation formats), throughuda single-shot and real-time technique.udFinally, I strongly believe that the ideas, techniques and devices demonstrated throughout thisudThesis can contribute to the development of novel integrated-waveguide all-optical/electro-opticaludprocessors.
机译:在过去的十年中,互联网访问,高速通信,高清晰度电视流和高容量云存储的显着增长影响了我们的日常生活。这导致对数据传输速度和数量的空前需求。为了克服当前电子电路的过高速度限制(实际上仅限于几十GHz以下的处理和转换速度),全光或替代电光解决方案引起了相当大的关注,其产生/处理速度从10s GHz至太几太赫兹。多年以来,工程师们一直将光线移到更接近计算系统核心的地方,即微处理器,以跟上操纵传输到电信网络的大量数据所需的交换和处理速度。由于数据中心的局限性,本主题对于数据中心中的应用特别重要(数据中心由组织通常用于组织远程存储,处理或分发大量数据的大量联网计算机服务器组成)。电子 udcircuits和铜线在处理和处理高数据速率中。 ud特别是,硅光子被视为满足光学和电子学的重要基础。 ud利用成熟的互补金属氧化物半导体(CMOS)制造工艺, udsilicon光子学提供晶圆规模测试,低成本封装,扩展至高集成度,解决了数据中心,超级计算机和集成电路中的电气互连限制。 ud尽管硅光子学提供了所有优势,但大多数已在 udinterconnects和/中实现或切换行业中的应用程序。已经在信号处理构建块中进行了巨大的努力,已经存在于电子领域,或者光域具有前所未有的操作带宽(处理速度)。这些信号 ud处理器通常分为两类:(1)线性光学和(2)基于非线性光学的 uddevice。线性光学信号处理器在电信领域具有较高的关注度,因为它们通常以较低的功率水平工作(几毫瓦到几十毫瓦)。与电子同类产品相比,这些处理器的处理速度提高了100到1000倍。本文的主要目的是开发集成的光子器件,用于片上光学脉冲成形,处理和测量。本论文包括 udnovel理论,设计,数值分析,布局准备和实验演示的建议和发展。 ud本论文的具体成就包括: uda)一种新颖的理论框架的建议和开发,即离散时空 udmapping在级联的同向耦合器中,可以实现实用的片上任意 u upp脉冲整形,时间分辨率范围从几飞秒到亚纳秒 udregime。 udb)片上光脉冲整形的建模,布局设计和实验演示基于离散时空映射理论的uddevices。演示的功能 ud包括:(1)高质量的亚皮秒/皮秒平顶脉冲生成; (2) udTsymbol / s光学相位编码比特包生成; (3)Tsymbol的光相位和幅值编码的位数据包的生成。 udc)提出并开发了一种使用结合在Michelson中的光子希尔伯特变换器(PHT)的非分散,可调谐带通/带阻滤波 udscheme干涉仪。通过相互控制PHT的中心频率,可以证明滤波器的抑制/通带的中心频率和频谱宽度都是可调的。在该项目中,使用两个容易实现的基于光纤布拉格光栅的PHT,从数字上证明了从260 MHz到60 GHz的带宽调谐。经过精心设计的滤波器在通带与抑制带之间具有较高的消光比(窄带滤波情况下为> 20dB),并具有非常陡峭的过渡,从抑制到通带的斜率为170- uddB / GHz。 udd)基于横向变迹/非集成波导布拉格光栅的绝缘体上硅(SOI)晶片上的片上分数/整数倍整数PHT的建议,建模,布局设计和实验演示。在这项工作中,通过实验实现了具有超过750 GHz的处理带宽的高性能光子整数和分数阶Hilbert变压器。 ude)片上,单脉冲和实时相位表征的实验演示 udof GHz速率的光通信信号。特别是,使用集成波导 udMach-Zehnder干涉仪(MZI)实现基于相位重建的 udon光学超快微分(PROUD),以演示GHz速率复杂调制信号的自参考相位 udcharacterization(例如,正交相移 udKeying(QPSK)以及振幅相移键控(APSK)调制格式),通过 uda单发和实时技术实现。 ud最后,我坚信在整个过程中展示的思想,技术和设备可以为小说的发展做出贡献集成波导全光/电光 ud处理器。

著录项

  • 作者

    Pishvai Bazargani Hamed;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号