首页> 外文OA文献 >An Inertial Dual-State State Estimator for Precision Planetary Landing with Hazard Detection and Avoidance
【2h】

An Inertial Dual-State State Estimator for Precision Planetary Landing with Hazard Detection and Avoidance

机译:具有危险检测和避免的精确行星着陆惯性双状态估计器

摘要

The navigation filter architecture successfully deployed on the Morpheus flight vehicle is presented. The filter was developed as a key element of the NASA Autonomous Landing and Hazard Avoidance Technology (ALHAT) project and over the course of 15 free fights was integrated into the Morpheus vehicle, operations, and flight control loop. Flight testing completed by demonstrating autonomous hazard detection and avoidance, integration of an altimeter, surface relative velocity (velocimeter) and hazard relative navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman flter software, and landing within 2 meters of the vertical testbed GPS-based navigation solution at the safe landing site target. Morpheus followed a trajectory that included an ascent phase followed by a partial descent-to-landing, although the proposed filter architecture is applicable to more general planetary precision entry, descent, and landings. The main new contribution is the incorporation of a sophisticated hazard relative navigation sensor-originally intended to locate safe landing sites-into the navigation system and employed as a navigation sensor. The formulation of a dual-state inertial extended Kalman filter was designed to address the precision planetary landing problem when viewed as a rendezvous problem with an intended landing site. For the required precision navigation system that is capable of navigating along a descent-to-landing trajectory to a precise landing, the impact of attitude errors on the translational state estimation are included in a fully integrated navigation structure in which translation state estimation is combined with attitude state estimation. The map tie errors are estimated as part of the process, thereby creating a dual-state filter implementation. Also, the filter is implemented using inertial states rather than states relative to the target. External measurements include altimeter, velocimeter, star camera, terrain relative navigation sensor, and a hazard relative navigation sensor providing information regarding hazards on a map generated on-the-fly.
机译:介绍了成功部署在Morpheus飞行器上的导航过滤器体系结构。该过滤器是作为NASA自主着陆和避险技术(ALHAT)项目的关键要素而开发的,在15次自由战斗过程中,该过滤器已集成到Morpheus的飞行器,操作和飞行控制回路中。通过演示自主危险检测和避免,将高度计,表面相对速度(速度计)和危险相对导航(HRN)测量值集成到机载双态惯性估计器Kalman flter软件中并在垂直方向2米以内着陆,完成了飞行测试在安全着陆点的目标上测试基于GPS的导航解决方案。 Morpheus遵循的轨迹包括上升阶段,然后是部分下降到着陆,尽管提出的滤波器架构适用于更一般的行星精度进入,下降和着陆。主要的新贡献是将复杂的危险相对导航传感器(最初旨在定位安全着陆点)并入导航系统,并用作导航传感器。双态惯性扩展卡尔曼滤波器的设计旨在解决精确的行星着陆问题,当它被视为具有预期着陆点的交会问题时。对于能够沿着下降到着陆的轨迹导航到精确着陆的精确导航系统,姿态误差对平移状态估计的影响包含在完全集成的导航结构中,其中平移状态估计与姿态状态估计。映射关系错误将作为该过程的一部分进行估算,从而创建双态滤波器实现。同样,使用惯性状态而不是相对于目标的状态来实现滤波器。外部测量包括高度计,速度计,恒星摄像机,地形相对导航传感器和危险相对导航传感器,这些传感器在飞行中生成的地图上提供有关危险的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号