首页> 外文OA文献 >Searching for patterns in remote sensing image databases using neural networks
【2h】

Searching for patterns in remote sensing image databases using neural networks

机译:使用神经网络在遥感影像数据库中搜索模式

摘要

We have investigated a method, based on a successful neural network multispectral image classification system, of searching for single patterns in remote sensing databases. While defining the pattern to search for and the feature to be used for that search (spectral, spatial, temporal, etc.) is challenging, a more difficult task is selecting competing patterns to train against the desired pattern. Schemes for competing pattern selection, including random selection and human interpreted selection, are discussed in the context of an example detection of dense urban areas in Landsat Thematic Mapper imagery. When applying the search to multiple images, a simple normalization method can alleviate the problem of inconsistent image calibration. Another potential problem, that of highly compressed data, was found to have a minimal effect on the ability to detect the desired pattern. The neural network algorithm has been implemented using the PVM (Parallel Virtual Machine) library and nearly-optimal speedups have been obtained that help alleviate the long process of searching through imagery.
机译:我们研究了一种基于成功的神经网络多光谱图像分类系统的,在遥感数据库中搜索单个模式的方法。虽然定义要搜索的模式并且要用于该搜索的特征(光谱,空间,时间等)具有挑战性,但更困难的任务是选择竞争模式以针对所需模式进行训练。在Landsat Thematic Mapper影像中检测密集城市区域的示例检测中,讨论了包括随机选择和人工解释选择在内的竞争模式选择方案。当将搜索应用于多个图像时,一种简单的归一化方法可以缓解图像校准不一致的问题。发现另一个潜在的问题,即高度压缩的数据,对检测所需模式的能力影响很小。使用PVM(并行虚拟机)库实现了神经网络算法,并获得了近乎最佳的加速比,这有助于减轻漫长的图像搜索过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号