首页>
外文OA文献
>Thermal/structural analyses of several hydrogen-cooled leading-edge concepts for hypersonic flight vehicles
【2h】
Thermal/structural analyses of several hydrogen-cooled leading-edge concepts for hypersonic flight vehicles
展开▼
机译:高超声速飞行器几种氢冷前沿概念的热/结构分析
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
The aerodynamic heating at high flight Mach numbers, when shock interference heating is included, can be extremely high and can exceed the capability of most conventional metallic and potential ceramic materials available. Numerical analyses of the heat transfer and thermal stresses are performed on three actively cooled leading-edge geometries (models) made of three different materials to address the issue of survivability in a hostile environment. These analyses show a mixture of results from one configuration to the next. Results for each configuration are presented and discussed. Combinations of enhanced internal film coefficients and high material thermal conductivity of copper and tungsten are predicted to maintain the maximum wall temperature for each concept within acceptable operating limits. The exception is the TD nickel material which is predicted to melt for most cases. The wide range of internal impingement film coefficients (based on correlations) for these conditions can lead to a significant uncertainty in expected leading-edge wall temperatures. The equivalent plastic strain, inherent in each configuration which results from the high thermal gradients, indicates a need for further cyclic analysis to determine component life.
展开▼