首页> 外文OA文献 >Nonlinear Performance Seeking Control using Fuzzy Model Reference Learning Control and the Method of Steepest Descent
【2h】

Nonlinear Performance Seeking Control using Fuzzy Model Reference Learning Control and the Method of Steepest Descent

机译:基于模糊模型参考学习控制和最速下降方法的非线性性能寻求控制

摘要

Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.
机译:性能寻求控制(PSC)尝试在将产生最大性能的操作条件下查找和控制过程。本文将利用模糊模型参考学习控制(FMRLC)和最速下降或梯度(SDG)方法开发非线性多变量PSC方法。该PSC控制方法采用SDG方法来查找将产生最大性能的运行条件。该操作条件又作为过程控制的设定点传递给FMRLC控制器。本文对传统的SDG算法进行了修改,以使收敛单调发生。对于FMRLC控制,使用常规的模糊模型参考学习控制方法,并在此处生成用于有效调整FMRLC控制器的准则。

著录项

  • 作者

    Kopasakis George;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号