首页> 外文OA文献 >Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars
【2h】

Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

机译:未来NASA登月和火星任务的核热火箭/车辆设计选项

摘要

The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a reference 240 t-class heavy lift launch vehicle (HLLV) and smaller 120 t HLLV option. Attractive performance characteristics and high-leverage technologies associated with both the engine and stage are identified, and supporting parametric sensitivity data is provided. The potential for commonality of engine and stage components to satisfy a broad range of lunar and Mars missions is also discussed.
机译:核热火箭(NTR)为未来的人类探索月球和火星的计划者/设计者提供独特的推进能力。除了具有较高的比脉冲(约850-1000 s)和发动机推力重量比(约3-10)外,NTR还可以配置为“双模式”系统,能够为航天器环境发电系统,通信和增强阶段的操作(例如,用于长期存储液态氢的制冷)。目前,核推进局(NPO)正在研究NTR的各种任务应用,从NASA的第一个月球前哨(FLO)任务的消耗性,单燃烧,跨月注射(TLI)阶段到所有多燃烧的推进性,由NTR供电的航天器,支持“分裂的货物驾驶冲刺”火星任务架构。每种应用都会在诸如发动机数量及其各自的推力水平,重新启动能力,燃料工作温度和寿命,低温流体存储以及级大小等方面产生一组特定的要求。研究了两种实心核NTR概念-一种基于NERVA(用于火箭运载工具的核发动机)衍生反应堆(NDR)技术,另一种概念利用了独立国家联合体开发的三元碳化物“扭曲带状”燃料形式(CIS)。 NDR和CIS概念具有已建立的技术数据库,涉及在具有代表性的运行条件下或附近进行的大量核试验。综合系统和任务研究表明,由两到四个15至25千克力NDR或CIS发动机组成的集群足以满足目前正在考虑的大多数月球和火星任务场景的需要。本文提供了NDR和CIS概念的描述和性能特征,总结了NASA的第一个月球哨站和火星任务场景,并描述了与参考240 t级重型起重运载火箭(HLLV)和更小型型号兼容的代表性货运和无人驾驶车辆的特征120 t HLLV选项。确定了与发动机和平台相关的有吸引力的性能特征和高杠杆技术,并提供了支持的参数灵敏度数据。还讨论了发动机和载物台零件具有通用性,以满足广泛的月球和火星飞行任务的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号