首页>
外文OA文献
>High Frequency Adaptive Instability Suppression Controls in a Liquid-Fueled Combustor
【2h】
High Frequency Adaptive Instability Suppression Controls in a Liquid-Fueled Combustor
展开▼
机译:液体燃料燃烧器中的高频自适应不稳定性抑制控制
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
This effort extends into high frequency (>500 Hz), an earlier developed adaptive control algorithm for the suppression of thermo-acoustic instabilities in a liquidfueled combustor. The earlier work covered the development of a controls algorithm for the suppression of a low frequency (~280 Hz) combustion instability based on simulations, with no hardware testing involved. The work described here includes changes to the simulation and controller design necessary to control the high frequency instability, augmentations to the control algorithm to improve its performance, and finally hardware testing and results with an experimental combustor rig developed for the high frequency case. The Adaptive Sliding Phasor Averaged Control (ASPAC) algorithm modulates the fuel flow in the combustor with a control phase that continuously slides back and forth within the phase region that reduces the amplitude of the instability. The results demonstrate the power of the method - that it can identify and suppress the instability even when the instability amplitude is buried in the noise of the combustor pressure. The successful testing of the ASPAC approach helped complete an important NASA milestone to demonstrate advanced technologies for low-emission combustors.
展开▼