首页> 外文OA文献 >Bell-Curve Genetic Algorithm for Mixed Continuous and Discrete Optimization Problems
【2h】

Bell-Curve Genetic Algorithm for Mixed Continuous and Discrete Optimization Problems

机译:混合连续和离散优化问题的Bell-Curve遗传算法

摘要

In this manuscript we have examined an extension of BCB that encompasses a mix of continuous and quasi-discrete, as well as truly-discrete applications. FVe began by testing two refinements to the discrete version of BCB. The testing of midpoint versus fitness (Tables 1 and 2) proved inconclusive. The testing of discrete normal tails versus standard mutation showed was conclusive and demonstrated that the discrete normal tails are better. Next, we implemented these refinements in a combined continuous and discrete BCB and compared the performance of two discrete distance on the hub problem. Here we found when "order does matter" it pays to take it into account.
机译:在本手稿中,我们研究了BCB的扩展,它涵盖了连续和准离散以及真正离散的应用。 FVe首先测试了BCB离散版本的两个改进。中点与适应性的测试(表1和2)没有定论。测试离散正常尾巴与标准突变的结果是结论性的,并证明离散正常尾巴更好。接下来,我们在组合的连续和离散BCB中实施了这些改进,并比较了轮毂问题上两个离散距离的性能。在这里,我们发现,当“订单确实重要”时,必须考虑到这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号