首页> 外文OA文献 >Multidisciplinary Design Optimization of a Full Vehicle with High Performance Computing
【2h】

Multidisciplinary Design Optimization of a Full Vehicle with High Performance Computing

机译:高性能计算的整车多学科设计优化

摘要

Multidisciplinary design optimization (MDO) of a full vehicle under the constraints of crashworthiness, NVH (Noise, Vibration and Harshness), durability, and other performance attributes is one of the imperative goals for automotive industry. However, it is often infeasible due to the lack of computational resources, robust simulation capabilities, and efficient optimization methodologies. This paper intends to move closer towards that goal by using parallel computers for the intensive computation and combining different approximations for dissimilar analyses in the MDO process. The MDO process presented in this paper is an extension of the previous work reported by Sobieski et al. In addition to the roof crush, two full vehicle crash modes are added: full frontal impact and 50% frontal offset crash. Instead of using an adaptive polynomial response surface method, this paper employs a DOE/RSM method for exploring the design space and constructing highly nonlinear crash functions. Two NMO strategies are used and results are compared. This paper demonstrates that with high performance computing, a conventionally intractable real world full vehicle multidisciplinary optimization problem considering all performance attributes with large number of design variables become feasible.
机译:在耐撞性,NVH(噪声,振动和苛刻性),耐用性和其他性能属性的约束下,整车的多学科设计优化(MDO)是汽车行业的当务之急。但是,由于缺乏计算资源,强大的仿真功能和高效的优化方法,这通常是不可行的。本文打算通过使用并行计算机进行密集计算,并在MDO过程中组合不同近似值以进行不相似分析,从而朝着该目标迈进。本文介绍的MDO过程是Sobieski等人先前报道的工作的扩展。除了车顶挤压之外,还增加了两种全车碰撞模式:全正面碰撞和50%正面偏移碰撞。本文不使用自适应多项式响应面方法,而是使用DOE / RSM方法探索设计空间并构造高度非线性的碰撞函数。使用了两种NMO策略并比较了结果。本文证明,通过高性能计算,考虑到所有具有大量设计变量的性能属性的,传统上难以解决的现实世界中的整车多学科优化问题变得可行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号